
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Cristina Videira Lopes
University of California, Irvine
lopes@ics.uci.edu

Aspect-Oriented Programming:
An Historical Perspective

(What’s in a Name?)

December 2002

ISR Technical Report # UCI-ISR-02-5

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

Aspect-Oriented Programming: An Historical Perspective
(What’s in a Name?)

Cristina Videira Lopes

Institute for Software Research

University of California, Irvine

Irvine, CA 92697-3425

lopes@ics.uci.edu

ISR Technical Report # UCI-ISR-02-5

December 2002

Abstract:

 The term “Aspect-Oriented Programming” (AOP) came into existence sometime

between November of 1995 and May of 1996, at the Xerox Palo Alto Research Center (PARC).

AOP was based on an extensive body of prior work, but somehow the existing terminology wasn’t

appropriate for describing what we were doing. The new programming technology we were

beginning to devise was going to change the world! In this article I will give my own account of

how AOP – the ideas, the technologies and the name – came to be. But History is just marginally

interesting if one doesn’t make the effort to learn from it and apply that knowledge in things that

are still to come. AOP didn’t quite “change the world” but, no doubt, it had an impact in research

communities and in programming at- large. There are valuable lessons to be learned from the

emergence of AOP, and an analysis of those is the ultimate goal of this article.

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

Aspect-Oriented Programming: An Historical Perspective
(What’s in a Name?)

Cristina Videira Lopes

Information and Computer Science
University of California, Irvine

Irvine, CA 92697
lopes@ics.uci.edu

Abstract
The term “Aspect-Oriented Programming” (AOP) came into existence
sometime between November of 1995 and May of 1996, at the Xerox Palo
Alto Research Center (PARC). AOP was based on an extensive body of prior
work, but somehow the existing terminology wasn’t appropriate for describing
what we were doing. The new programming technology we were beginning to
devise was going to change the world!
In this article I will give my own account of how AOP – the ideas, the
technologies and the name – came to be. But History is just marginally
interesting if one doesn’t make the effort to learn from it and apply that
knowledge in things that are still to come. AOP didn’t quite “change the
world” but, no doubt, it had an impact in research communities and in
programming at-large. There are valuable lessons to be learned from the
emergence of AOP, and an analysis of those is the ultimate goal of this article.

1 A Matter of Style
Giving an historical perspective of a technology involves stating facts as much as it
involves describing the technical context in which the technology emerged and
understanding the dynamics of the group of people who created it. Having been part of
that group, I am in a privileged position to tell the AOP story, or at least a rendition of
that story. Like most historical perspectives, this one is based on facts, but the
interpretations and comments are entirely my own. Also like most historical perspectives,
this one is incomplete: it focuses on the period 1995-1998, the time when AOP and, later,
AspectJ emerged. A lot had happened before and a lot has happened since then.

AOP, as such, started emerging in 1995 when I was already at PARC as a visiting
student. In the years that followed, one of the types of questions I got asked more often
was “what is AOP?” Is it a programming language? Macros in disguise? A design
methodology? A clever pre-processor? Meta-programming? How is this different from X
(replace X with your favorite programming trick or language feature)?… The other
question I got asked frequently was “what are aspects?” Synchronization and tracing feel
like aspects but what else? And what makes an aspect be an aspect, anyway? …

As I’m writing this article, seven years later, I have good answers for all of these
questions. But that wasn’t the case back in 1995-1998. In fact, many brilliant minds have
blamed the AOP group for propagating subversive ideas without having clear definitions

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

for what we were trying to do. They were right: our definitions were fuzzy and got
clearer over time. Back then, we had two options: we could lock ourselves in the office
for a few years, brainstorm and beat the thing to death until we figured it all out; or we
could bring a semi-baked idea to the public and iterate with a larger community until the
clear definitions would emerge. We chose the latter. The reasons for this choice are as
much pragmatic as they are a matter personal style. The pragmatic reasons included the
following. First, we all believed that the validation of the AOP thesis (i.e. that it led to
better programs) could only be done outside the controlled environment of our offices. So
there was no point in locking ourselves up to come up with a beautiful formal semantics,
because that would miss the core of the thesis. Second, we also believed that what we
were doing crosscut the boundaries of the traditional communities in software
engineering and programming languages. We needed to get early input from different
kinds of people, especially from “real programmers,” our ultimate valuators.

Many researchers will probably resonate with this need to reach out in order to validate
their work; others won’t. Again, a matter of style. But among those that do, not many can
do it successfully, even when their work is impressive. It takes financial support, a good
team and a good team leader – these are all management issues that many researchers
tend to overlook. The popularity of AOP and AspectJ is due, firstly, to Gregor Kiczales,
not only for his technical leadership but also to his natural ability to secure resources and
attract people.

2 Research Trends in the Early 90s
In writing this section, I have consulted a technical report written by my colleague Walter
Hürsch and myself at the end of 1994 (Hürsch and Lopes 1995). That report was entitled
“Separation of Concerns” and it was written when I was still at Northeastern University.
In retrospect, it is evident that we missed a few important pieces of work and that we had
a somewhat narrow vision of what it was that was being separated. But overall, that
report did a good job in capturing a trend that was in the air, and that is the reason why I
am evoking it here. People were talking about “separation of concerns;” our report
captured the building blocks and the conceptual glue of what later became AOP and the
AOP community. For reasons that fall out of the scope of this article, Walter and I
stopped working on that report. I continued working on my thesis, which focused in
concurrency and distribution Aspects.

What follows is a summary of that report. Parts in italics are verbatim text. In reading it,
the reader should place him/herself in 1994.

2.1 Formulation of the Problem
The increasing complexity of today's software applications and the advent of novel and
innovative technology make it necessary for programs to incorporate and deal with an
ever greater variety of special computing concerns such as concurrency, distribution,
real-time constraints, location control, persistence, and failure recovery. Underlying all
of these special purpose concerns is the basic concern responsible for the fundamental
computational algorithm and the basic functionality. Special purpose concerns exist to
either fulfill special requirements of the application (real-time, persistence, distribution),

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

or manage and optimize the basic computational algorithm (location control,
concurrency).

Typical approaches to integrate an additional concern have been to extend a given
programming language by providing a few new programming language constructs that
address the concern. An example of such an extension is the Distributed Real-time Object
Language DROL (Takashio and Tokoro 1992), an extension of C++ with the capability
of describing distributed real-time systems.

Even though the concerns may be separated conceptually and incorporated correctly,
commingling them in the code brings about a number of problems:

• Programming intertwined code is hard and complex since all concerns have to be
dealt with at the same time and at the same level. The extended programming
language provides no adequate abstraction of concerns at the implementation
level.

• Intertwined code is hard to understand because of the above lack of abstraction.

• Commingled code is hard to maintain and modify because the concerns are
strongly coupled.

• Specific to object-oriented systems, the intertwined code gives rise to inheritance
anomalies (Aksit et al. 1994, Matsuoka and Yonezawa 1993) due to the strong
coupling of the different concerns. It becomes impossible to redefine a method
implementation or the commingled special concern in a subclass without
redefining both.

Many researchers have recognized the above problems for single concerns in their
specific area of expertise and have started to address them. Many devised techniques for
separating individual concerns (Aksit et al. 1992, Aksit et al. 1994, Honda and Tokoro
1992, Okamura and Ishikawa 1994, Aksit, Wakita et al. 1994, Lopes and Lieberherr
1994, Lieberherr et al. 1994).

2.2 Analysis of the Problem and Specialized Solutions
For software concerns, we distinguished two different levels of separation:

Conceptual level. At the conceptual level, the separation of concerns needs to address
three issues. 1) Provide a sufficient abstraction for each concern as an individual
concept. 2) Ensure that the individual concepts are primitive, in the sense that they
address the natural concerns in the mind of the programmer.

Implementation level. At the implementation level, the separation of concerns needs to
provide an adequate organization that isolates the concerns from each other. The goal at
this level is to separate the blocks of code which address the different concerns, and
provide for a loose coupling of them.

The concerns identified at the conceptual level are mapped into the implementation level
using a programming language. Separation of concerns at the conceptual level is
generally considered a primary means to manage complexity in all engineering
disciplines. However, few programming languages allow these abstractions to actually

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

be separately programmed. The resulting code organization is monolithic, intertwining
statements for different purposes.

We believe that programming all concerns in one monolithic program block increases
complexity considerably and unnecessarily. By abstracting concerns out and separating
them, programming individual concerns becomes substantially less complex, and code
can be effectively reused.

We turned then to some approaches that had been suggested in the literature, including
the work of our own group, Demeter (Lieberherr et al. 1994, Silva-Lepe et al. 1994). We
identified a set of papers that focused on the separation of some concern from the basic
algorithmic concern. Table 1 gives an overview of this survey; I have now added more
references than what we originally had.

Technique →

Concern ↓

Meta-level
Programming

Adaptive
Programming

Composition
Filters

Others

Class
organization

 Lieberherr et al.
1994

Process
synchronization

Watanabe and
Yonezawa 1990

Lopes and
Lieberherr 1994

Aksit, Wakita
et al. 1994

Frølund and
Agha 1993

Reghizzi and
Paratesi 1991

Location
control

Okamura and
Ishikawa 1994

 Zeidler and
Gerteis 1992

Takashio and
Tokoro 1992

Real-time
constraints

 Aksit et al.
1994

Barbacci and
Wing 1986

Others Liskov and
Schifler 1983

Jacobson 1986

Magee et al.
1989

Table 1. Approaches for separating certain concerns from the functionality of the programs.

2.3 Identifying Software Concerns That Can Be Separated
In the “Separation of Concerns” report, Walter and I then went on to analyzing the major
software concerns that had been referenced in the literature. We focused on six: class
organization, synchronization, location control (configuration issues), real-time
constraints and failure recovery. We stressed the point that such as list was, by no means,

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

exhaustive; we believed it was open-ended. For the purposes of that report, we were
simply compiling a set of software engineering concerns that had been frequently referred
to in different papers as problematic. We mentioned other examples such as debugging,
persistence and transaction management.

In the years that followed, these concerns would be, again, the central focus of AOP-
related work. Later on, AspectJ introduced general-purpose aspect programming
constructs that made the concept of “aspect” more general and helped open up the list.

2.4 Separation Techniques
In the report, we made a distinction between separation of concerns at the conceptual
level and at the implementation level. The former may exist without the latter, and that
was pretty much the state-of -the-art in 1994. There were, however, some programming
techniques that looked promising for achieving the separation at the implementation
level. Table 1 shows the techniques we identified at the time. What follows are the
highlights of our analysis.

2.4.1 Meta-Level Programming
Meta-level programming is a well-know paradigm that has been documented in several
publications (Smith 1984, Maes 1987, Watanabe and Yonezawa 1990, Kiczales et al.
1991, Okamura and Ishikawa 1994, among others). A reflective system incorporates
structures for representing itself. The basic constructs of the programming language,
such as classes or object invocation, are described at the meta-level and can be extended
or redefined by meta-programming. Each object is associated with a metaobject through
a meta-link. The metaobject is responsible for the semantics of operations on the base
object.

How does meta-level programming support the separation of concerns at the
implementation level? By trapping message sends and message receives to objects,
metaobjects have the opportunity to perform work on behalf of the special purpose
concerns. For example, they can check for synchronization constraints, assure real-time
specifications, migrate parameters between machines, write logs, and so forth. This
allows the base-level algorithms to be written without the special purpose concerns,
which in turn can be programmed in the metaobjects. Also, by having structural
reflection (meta-knowledge about the relations between classes), meta-level
programming can achieve separation between algorithms and data organization.

2.4.2 Adaptive Programming
The work described in Lieberherr et al. 1994 and Lopes and Lieberherr 1994 presents
adaptive software, a programming model based on code patterns. The relations between
the data structures of the application is described by graphs (called class dictionary
graphs) to which the patterns apply. A pattern compiler takes a set of patterns and a
class dictionary graph and produces an object-oriented program. Code patterns are
classified in different categories, each one capturing abstractions in programming:

Propagation patterns define operations (algorithms) on the data. Propagation patterns
identify subgraphs of classes that interact for a specific operation. References to the data

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

are made in a structure-shy manner through succinct subgraph specifications, and the
actual code is defined in code wrappers along traversal paths.

Transportation patterns abstract the concept of parameterization. They are used within
propagation patterns in order to carry parameters in and out along the subgraphs.

Synchronization patterns define synchronization schemes between the objects in
concurrent applications. Their purpose is to control the processes' access to the
execution of the operations.

How does adaptive programming support the separation of concerns at the
implementation level? Each pattern category addresses a different concern. The patterns
that define a program can be viewed as the basic software components that interact with
each other in a very loose manner through name resolution. Each pattern is quasi
independent of both the other patterns and the data organization with the effect that
changes in the class organization don't necessarily imply updates in the operations, and
modifications of the algorithms don't necessarily imply changes in the synchronization
scheme.

2.4.3 Composition Filters
The composition filter model is an extension of the conventional object-oriented model
through the addition of object composition filters. For a detailed description of the model
and its various applications we refer to Aksit et al. 1992, Bergmans 1994, Aksit et al.
1994. Filters are first class objects and thus are instances of filter classes. The purpose of
filters is to manage and affect message sends and receives. In particular, a filter specifies
conditions for message acceptance or rejection, and determines the appropriate resulting
action. Filters are programmable on a per class basis. The system makes sure that a
message is processed by the filters before the corresponding method is executed: once a
message is received, it has to pass through a set of input filters, and before a message is
sent, it has to pass through a set of output filters.

How do composition filters support the separation of concerns at the implementation
level? Separation of concerns is achieved by defining a filter class for each concern. For
example, in Aksit et al. 1994 a real-time filter RealTime was proposed to affect the
real-time aspects of incoming messages. RealTime filters have access to a time object
that is carried with every message and which specifies the earliest starting time and a
deadline for the message. Each filter class is responsible for handling all aspects of its
associated concern. The filter mechanism gives programmers a chance to trap both
message receives and sends, and to perform certain actions before the code of the method
is actually executed. The resulting code is thus nicely separated into the special purpose
concern (in the filter) and basic concern (in the method).

Discussion

Common to the above techniques is the fact that they provide some mechanism to
intercept message sends and receives. Metaobject protocols perform the interception at
the meta-level through computational reflection and reification of messages. Composition
filters trap messages through the built-in filter mechanism. In both cases, interception
was done at run-time. Adaptive programming achieves message interception at compile

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

time; the AP compiler detects when a method needs to be extended with code for special
purpose concerns and inserts that code directly, i.e. a preprocessor.

An important aspect of meta-level programming is that the separation of concerns is not
imposed by the model. Rather, meta-level programming facilitates the separation of
concerns by providing the reflective information about the constructs of the language
itself. Programming the special purpose concerns at the meta-level is a strategy that may
or may not be followed by the programmers. This is contrary to filters and Adaptive
programming, which provide specific language constructs to achieve the separation of
concerns. A consequence of this fact is that in both the filters approach and the code
patterns approach a new language construct is necessary for each new concern to be
dealt with, while in the meta-level programming it is not so.

In retrospect, we missed at least one important piece of related work: Subject-Oriented
Programming (Harrison and Ossher 1993). We also missed the opportunity to compare
all these approaches with an emerging wave, design patterns (Gamma et al. 1994). But
the important thing about our paper was to point out how the search for better expression
mechanisms that focused on certain software development concerns were, in fact, driving
a large number of research efforts at the time. This research was being driven by some
common goal, and it was important for me to understand what that was; I wanted to
formulate the kernel of the problem that was prompting so many solutions. Why weren’t
C++ or Lisp good enough?

3 The Birth of AOP @ PARC
In the summer of 1995, as I was starting to devise a thesis proposal based on some of
these ideas, I went on an internship to Xerox PARC, in Gregor Kiczales’ group. The
group at the time was working on Open Implementations (Kiczales 1995, Kiczales 1996,
Kiczales et al. ICSE 1997). During that summer I implemented Demeter’s traversals in a
dialect of Scheme that supported OO reflection (Lopes and Lieberherr 1996), reinforcing
the idea that reflection was a powerful programming technique that could support
Demeter’s useful concepts for software evolution. Following that internship, I got an
invitation to stay at PARC and continue my thesis work there. And so I did. The three
years that followed were crucial both to the foundations of AOP and to me, personally: I
defended my thesis at the end of the summer of 1997. Between 95 and 97, I continued to
work under Karl Lieberherr’s supervision, but I had Gregor Kiczales as a co-advisor.

I can’t remember the exact date when we decided to call our work “Aspect-Oriented
Programming,” but I remember the term was suggested by Chris Maeda, the most
business-oriented person of the group. Another name being tossed around was Aspectual
Decomposition and Weaving (ADW), which was dropped. In my notebook, the first
reference to “AOP” occurs at the end of November 1995. In January 1996, my notebook
indicates that we were using Open Implementation and AOP at the same time, although
for different pieces of the group’s work. By June of 1996 we submitted a proposal to
DARPA entitled “Aspect-Oriented Programming.” By the end of 1996 the references to
Open Implementation in my notebook disappeared.

One other word that defined AOP was the word “weaver.” Again, I can’t remember the
exact date when that word emerged and who suggested it, but it must have happened in

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

late 1995 or early 1996. Weaver was the name we gave to the pre-processors that would
merge the components and aspect modules into base language source code. Later, this
word was disfavored, because it had a strong connotation with text pre-processing. But
“weaver” is still a good word for the AOP language processors, even as they are more
than simple text pre-processing. The latest version of the AspectJ compiler is a good
example of bytecode weaving that supports the join point model.

In October of 1996 we held a workshop at PARC to which we invited certain people who
were pursuing work related to separation of concerns. That was the kick-off meeting for
discussing AOP beyond our group; I’ll say more about that in the next section. In this
section, I’ll focus on work done by the group at PARC.

3.1 RG
One of the projects going on at PARC when I got there was RG (Mahoney 1995,
Mendhekar 1997). The concern that was targeted in that project was the optimization of
memory usage when composing functions containing loops over matrices. Although the
optimization of memory usage has never, since then, been analyzed as an aspect, the RG
example was actually very interesting, and it was chosen as the leading example in the
first AOP paper (Kiczales et al. ECOOP 1997). The reason why RG is interesting is that
the problem in it illustrates quite well, even better than the AspectJ examples, what I
think is the essence of AOP: the need for more powerful referencing mechanisms in a
programming language. The aspects in RG expressed issues like the following (citing
from Mendhekar et al. 1997):

“For every message send invoking a primitive filter, before computing
its arguments, examine each argument and determine whether the loop
structure needed to calculate the filter is compatible with the loop
structure needed to calculate the argument. In that case, generate a
single loop structure that computes both the argument value and the
filter value, and replace the original message send with a send to the
fused loop.”

While I might chose a slightly different wording, what this quote shows is that there is
the need to refer to lots of different things: “every message send” of a certain kind,
“before computing its arguments” and certain “loop structures” in the target object and
the arguments. These are all referencing needs that are not supported by most
programming languages, and that the group at PARC was trying to support.

3.2 AML
A second project under way was Annotated MatLab, or AML (Irwin et al. 1997). The
problem addressed here was the optimization of certain MatLab programs, again focusing
on memory usage and operation fusion. The AML solution was to annotate the MatLab
code with special directives, mostly declarative, that augmented the code with
information so that a language processor could produce optimized code.

There were many discussions among the group at PARC of whether AML was AOP or
not. The final language annotations didn’t look like our other systems, in that they
weren’t separated from the base code, they were still embedded in it. But, more

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

importantly, it was hard to express in plain English the abstractions that those directives
captured. For this reason, AML didn’t make it to the ECOOP paper. It served, however,
as a data point to formulate what aspect-oriented programming should(n’t) be like.

3.3 ETCML
Between the summer of 1995 and the summer of 1997, John Lamping was working,
among other things, on a little system called Evaluation Time Control Meta Language
(ETCML). The idea was to provide a set of directives that programmers could use in
order to instruct the language processor about when to evaluate certain pieces of code.
This work was in the sequence of the work in Reflection, more precisely to identify
whether certain parts of the code should be evaluated at compile-time or at run-time. This
came from the need to optimize metaobject protocols, making them be compiled away.
The thesis there was that the language processor could not always determine the best
evaluation time, and that input from the programmer would simplify immensely the task
of the language processor. In ETCML evaluation time was being analyzed as a software
development concern that had important consequences on run-time performance.

This work served as another interesting data point to think about software development
concerns that were relatively independent from the functional code.

3.4 DJ
Prior to the doctorate program, my background was in distributed operating systems
(Sousa et al. 1993). That led me to the search for better expression mechanisms for
distributed programming. When I went to PARC I had outlined my thesis in two
publications: an ECOOP paper (Lopes and Lieberherr 1994) and an ISOTAS paper
(Lopes 1996). Those were the pillars of my dissertation: a couple of small languages for
distributed programming which I called D (as in Distributed Programming) and their
specification as an extension to Java, DJ (Lopes 1998). The two little languages were
called COOL and RIDL.1

DJ was different from RG, AML and ETCML, and used a technical approach more
similar to that of Demeter (Lieberherr et al. 1994) than that used at the time by the group
at PARC, i.e. Reflection (Kiczales 1991) and Open Implementation (Kiczales 1995,
Kiczales 1996). For starters, DJ didn’t target run-time optimizations; it targeted program-
time expressiveness for some distributed programming concerns. RG, AML and ETCML
had a top-down flavor: there was the notion of what a well designed program should look
like and they were adding more instructions for tuning the performance without
modifying the original well-designed programs. DJ had a bottom-up flavor: based on
what distributed programs looked like, usually messy, I was trying to reorganize the code
so that certain concerns that were tangled in Java could be untangled. In the process, I
was defining language constructs that would allow me to do that. In the end, the
combination of the top-down and bottom-up approaches proved to be fruitful.

1 A few years later, in 2000 or so, my advisor Karl Lieberherr decided to rename “Demeter/Java” to “DJ”
(Orleans and Lieberherr 2001, Lieberherr et al. 2001). Are you confused yet? Throughout this article, DJ
refers to my DJ back in 1995-1997; my advisor’s system will be called Demeter/Java, as it was at the time.

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

I didn’t particularly like the meta-level programming model. Certainly that model and the
resulting techniques could be used to separate the concerns I was studying, but it felt
awkward, albeit the only decent model at the time. Metaobjects have a beautiful run-time,
interpretive semantics; I wanted a compile-time process. Compile-time reflection looses
the beautiful simplicity of the run-time reflection model: metaobjects start to feel and act
like macros. Therefore one is led to question whether that is the right model for compile-
time processes at all. I didn’t think so. I thought compile-time reflection introduced
unnecessary complexity to the expression mechanisms I was looking for. Here is what I
was looking for.

For synchronization, I wanted to be able to say things like “before executing the
operation take in BoundedBuffer objects, make sure no other thread is executing it in the
same object and make sure the buffer is not empty; otherwise wait” or “after executing
the operation take in BoundedBuffer objects, check if the buffer is empty and, if so, mark
it as empty; also, check if the buffer was previously full and, if so, mark it as not full”. I
also wanted to allow the expression of multi-object coordination schemes for concurrent
agents like “before executing the operation activate in the Engine object, make sure the
Door object is closed.” It seemed awkward to me that in order to say this I would have to
define metaclasses, instantiate and associate a metaobject for every base object, trap
every message sent to the base objects and execute their metaobjects code at those points.
For multi-object coordination schemes, the one-to-one association between base and meta
objects wasn’t even appropriate: we would want one single coordinator associated with
the objects involved in the coordination scheme.

For remote parameter passing, I wanted to be able to say things like “when the operation
getBook of Library objects is invoked remotely, the returned Book object should be
copied back to the client, but the field shelfCopies shouldn’t be included” or “when the
operation borrowedBooks(User) of Library objects is invoked remotely, the only
information that’s needed from the User parameter is the User’s name, so copy only
that.” Again, it seemed awkward that in order to express this I would have to use the
reflection model.

Things would get even more confusing when these directives were to have a static code
generation effect, which was what I was looking for. Although the reflection model might
be a reasonable implementation model for the process, it certainly wasn’t true to the
intentions of synchronization and remote parameter passing directives, as expressed in
plain English. The problem, then, was the expression of referencing.

So I came up with a simpler referencing mechanism, which was inspired by a body of
previous work done by other people, but especially by my advisor Karl Lieberherr’s
Demeter system. The directives, expressed separately from the classes, would refer to the
object’s operations and internals by name:
 coordinator BoundedBuffer {
 selfex put, take;
 mutex {put, take};
 condition empty = true, full = false;
 put: requires !full;
 on_exit {
 if (empty) empty = false;
 if (usedSlots == capacity) full = true;
 }

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

 take: requires !empty;
 on_exit {
 if (full) full = false;
 if (usedSlots == 0) empty = true;
 }
 }
and
 portal LibrarySystem {
 boolean registerUser(User user) {
 //Only strings. Everything else of User is excluded.
 user: copy {User only all.String;}
 };
 Book getBook(int isbn){
 //for the return object, exclude the field shelfCopies
 return: copy {Book bypass shelfCopies;}
 };
 BookList borrowedBooks(User user) {
 //for return object, exclude the field shelfCopies
 return: copy {Book bypass shelfCopies;}
 // for User, bring only the name
 user: copy {User only name;}
 };
 }

The binding, by direct naming, was unidirectional from these modules to the classes they
referred to, and not the other way around. In other words, contrary to the dominating
paradigm that said that each module must specify itself and its dependencies completely,
this scheme allowed the definition of modules that would “impose” themselves on other
modules, without an explicit request or permission from the latter. With this scheme, it
was trivial to plug in and unplug concern-specific modules with a compilation switch.

This scheme also scaled nicely for multi-object schemes: just add more class names to the
list of classes the coordinators and the portals were associated with, and we could refer to
the operations and internals of those classes. E.g.
 coordinator Engine, Door {…}

3.5 DJava
Up until 1997, DJ was my own little piece of work, a system that I had carried with me
from Northeastern, and one among others that we, as a group, were working on. In 1997
things changed.

I spent most of that year locked in my apartment writing my dissertation, so I didn’t
participate much in the group’s activities. In the Spring, Gregor decided to invest the
group’s resources into the implementation of a DJ weaver, a pre-processor written in
Lisp. That first language implementation, called DJava, supported COOL and some of
RIDL. Over that summer, they planned a usability study. The users were four summer
interns. They wrote a distributed space war game with it. This sure came handy as I was
writing the Validation chapter! A report of those activities can be found in my
dissertation (Lopes 1998, chapter 5). We used that application as an example for a long
time.

At the end of the summer, Gregor decided to use DJava as the flagship system, the seed
of what later became AspectJ.

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

In the meantime, back at Northeastern, Karl Lieberherr also decided to incorporate DJ
into Demeter/Java. That happened from the end of 1997 throughout 1998.

3.6 AspectJ
The first version of AspectJ, made public in March of 1998, was a reimplementation of
DJava. It supported only COOL. Another release followed soon, I believe it was AspectJ
0.1. It included RIDL. A group at the University of British Columbia did some
preliminary usability tests with this version. The results can be found in Walker et al.
1999.

As release 0.1 was coming out, at the end of April of 1998, AspectJ suffered a
transfiguration. Gregor wanted to develop a general-purpose aspect language. DJ was a
couple of concern-specific languages; it wasn’t very useful for general purpose
programming. The decision to make AspectJ general-purpose wasn’t simple, at least for
me. First, we had already released two versions, and changing the language’s philosophy
would probably confuse those who had been using it as a reference for AOP. But, most
importantly, it wasn’t at all obvious to me how a general-purpose aspect language would,
indeed, be useful at the time, given the limited number of crosscutting concerns we had
previously identified. What examples would we use to justify and explain it?

In retrospect, it is clear my fears were inconsequential. AspectJ is a lot more useful for a
larger number of software development needs than it would have been if we had
continued the path we initially set, which was, by design, limited. DJ served AOP well,
but it was time to grow it. What follows is a brief analysis of what it took to make the
shift from concern-specific to general-purpose.

In a paper we published in the summer of 1998 (Lopes and Kiczales 1998) we used the
following picture to describe the range of languages we had been designing:

low-level

general-purpose

concern-specific

domain-specific

application-specific

aspectj

DJ

RG

AML

high-level

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

How did we move from concern-specific to general purpose? What was preserved, what
was added and what was thrown away? This is my view about the transition process.

Significant differences:

• The concept of having coordinators and portals as first-order elements of the language
went away. AspectJ has “aspects.” Aspects could, then, be coordinators and,
eventually portals too. In fact, the subsequent releases of AspectJ had examples of
aspects acting as coordinators and even reusable coordinator library aspects, which,
because of the elimination of syntax, had a lot more lines of code than their DJ
counterparts. But the good thing was that aspects could play lots of other roles
without having to add more syntax. This was the design change that made AspectJ
general-purpose.

• Central to DJ and Demeter was the concept of programming crosscutting concerns
separately from the “primary” concerns, using special kinds of modules that could not
be referenced back by the objects. The existence of aspect instances, and the
possibility of their being handled in programs, was a point of much discussion, and
during the first 2+ years of development we went back and forth on this issue (I call it
“the metaobject syndrome”). The compromise was to use a singleton aspect instance
by default. This is still the policy in the latest version of AspectJ, although it now
provides a richer set of aspect instance associations. Unlike DJ, AspectJ provides
handlers to aspect instances through the aspectOf() operation.

Significant clarifications:

• The concept of join point, which had been identified in DJ, RG and other systems,
was cleaned up. DJ had only two kinds of join points: the reception of messages by
objects (in COOL and RIDL) and the sending of messages to objects (in RIDL).
Gregor envisioned a much richer set of join points that are now part of the AspectJ
join point model. This extension, by itself, didn’t make AspectJ general-purpose, but
it certainly expanded the kinds of crosscuts it could express. In particular, this
clarification allowed for the definition of control flow pointcuts, in later versions of
AspectJ.

Significant preservations:

• Two basic principles were preserved: the presentation of AspectJ as an extension to
Java and the implementation of the weaver as a compile-time process. Up until
recently, the weaver was a pre-processor, transforming AspectJ programs into Java
programs. Now it operates on bytecodes.

• Central to DJ and Demeter was the concept of referring to the join points using a very
simple direct naming scheme based on the names of the classes and the fields. Since
in DJ the “aspect” modules could refer to several classes, it used qualified names such
as ClassName.FieldName, which could include wild cards. One design point was very
important: there was no notion of this naming process being a reflective operation.
To understand this, we have to look at the alternatives. In other languages, e.g. CLOS
(Steele 1990), once we have an object, we can get the names of classes and members
through a reflective API, and we can build meta-programs with that. DJ did not have
the base-meta distinction and the API that goes with it; it had a simple declarative

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

form for naming join points. That was preserved in AspectJ. The denotation of join
points suffered several syntactic changes over the years, especially as we started to
extend the kinds of join points supported by AspectJ. But unlike meta-programming,
the naming is not programmatic but declarative: therefore, it feels very “natural,” as
declarative programming usually does.

• The temporal referencing before/after associated with join points existed in DJ and
was preserved in AspectJ. (Note that before/after existed in other systems prior to DJ,
namely in CLOS and in Demeter)

• The static introduction of structure and behavior had been defined early on for COOL
(Lopes and Lieberherr 1994). CLOS (Steele 1990) also supported a similar feature,
but for run-time. Introduction generated much discussion, as it didn’t fit too well the
run-time semantics of join points, but it was preserved in AspectJ. Over the years, it
suffered several changes and clarifications.

Past the transition from concern-specific to general-purpose aspect language, which
happened in 1998, AspectJ evolved considerably. Part of that evolution was due to the
commitment to a solid advanced development plan. The support from DARPA, starting
in 1998, allowed Gregor to get the resources he needed. In early 1999 the weaver was
rewritten in Java, which made the system much more portable than the previous Lisp
version. At the end of that year, there were extensions to existing Integrated Development
Environments. The design of AspectJ stabilized when it got to release 0.7, in the first half
of 2000. That was also the time I started pursuing other interests.

In form of conclusion to this section, it should be noted that lots of people were directly
involved in the AOP project at PARC, at different times, besides Gregor Kiczales and
myself. In the early days of AOP, the group included John Lamping, Anurag Mendhekar,
Chris Maeda, Jean-Marc Loingtier and John Irwin. Venkatesh Choppella was there
during the transition from DJ to the general-purpose AspectJ. Jim Hugunin and Mik
Kersten joined in the transition to advanced development. Others, including Erik
Hilsdale, joined after I left the project, and helped solidify the technology even further.
Over the years, more than a dozen summer students contributed to the project; I can’t
remember all their names, so I leave them nameless.

4 Building Communities
Communities rarely happen spontaneously. It takes time and planning to create and
expand them. The AOP group at PARC has put a significant effort in building
communities around the technology. Lots of people outside our group were instrumental
in helping clarify the concepts, by providing alternative technologies and all sorts of
feedback. There were/are two kinds of communities: researchers and practitioners. The
bridge was done by very special people: early adopters, those people who work in
industry but have the curiosity and the will to try out beta systems.

4.1 Researchers
As mentioned earlier in the paper, in October of 1996 we held a workshop at PARC to
which we invited researchers we knew were working in similar things. There were about
15 people in that meeting. The goal of that workshop was to discuss the major

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

characteristics of, and compare, the work we all were doing. That included AOP (i.e. the
PARC people), Subject-Oriented Programming (Ossher and Tarr), Composition Filters
(Aksit and Bergmans), Reflection (Matsuoka et al.) and Adaptive Programming
(Lieberherr). It was a fruitful workshop. One of the outcomes was the plan for a larger
workshop associated with ECOOP’97, with the title “Aspect-Oriented Programming.”
That workshop attracted over 40 people and was a big success. AOP felt like the new kid
on the OOP block. After that, there was an AOP workshop at ECOOP every year until
2000, and one AOP workshop at ICSE’98. At every workshop, I always met new people
whose work would fit and enrich the separation of concerns/AOP umbrella.

4.2 Practitioners
Building communities of users, especially the “real” ones, is much harder than building
communities of researchers. By “real” users I mean software engineers developing
products in companies. Researchers thrive on ideas; practitioners thrive on solid systems
that solve their problems without introducing new problems. Nobody in industry will use
a system just because it embodies an interesting idea that will potentially help them.

Our first users were graduate students linked to the research community. They were the
only ones who were motivated enough to skip through all the bugs! They weren’t really
using the language to build anything; they were using it as a reference point. Our first
“real” users started to show up in the beginning of 2000. At this point, the compiler was
solid enough to handle a few hundred classes. The first users who contacted us had read
about AOP, had played a bit with the examples in AspectJ and wanted to try it in parts of
their projects, with our support, for debugging aspects.

Early adopters are essential but they are also hard to deal with. They try something and
they either like it – pushing it to the limit and asking for more – or drop it – silently. A
handful of early users were patient enough to point out defects and weaknesses, and
persisted in using AspectJ until it got a lot more solid. The vast majority were put off by
the beta-ness of the language. Given that I left the AOP project later that year, I can’t say
much about what happened next. Accounting from the traffic in the mailing list, the
articles in industry magazines and the third-party IDE support, it looks like AspectJ has
been embraced by a large community. Some of the AOP ideas are here to stay!

5 Looking Back
It is quite interesting to look back to the period 1994-1997 and to compare my vision of
AOP at the time with what AOP is now. My notion of Aspects2 was based on systems I
had worked on or studied. So, back then, according to my “Separation of Concerns”
report, Aspects, independent of the techniques used to program them, were things like
synchronization, remote parameter passing, configuration issues, real-time constraints,
object structure, failure handling, persistence, security, debugging, etc. When I went to
PARC, I found out about run-time performance Aspects such as memory optimization,
loop fusion and evaluation time. Recently, I did a quick survey at what users are using
AspectJ for, by looking at articles in industry magazines (Spurlin 2002, Grosso 2002,

2 I am using Aspect with a capital A to denote crosscutting concerns at the conceptual (design) level, not at
the implementation (AspectJ) level.

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

Lesiecki 2002, Laddad 2002) and posting a question in the users list. The following
categorization is an attempt at organizing my findings:

(1) debugging and instrumentation Aspects such as tracing, logging, testing, profiling,
monitoring and asserting. Most of the usages fall into this category. But some usages are
very sophisticated. For example, one user reported having built a “virtual internal
information bus” inside their application.

(2) program construction Aspects such as mixins, multiple-inheritance (e.g. for bean
construction) and views;

(3) configuration Aspects such as managing the specifics of using different platforms and
choosing appropriate name spaces for property management;

(4) enforcement and verification Aspects such as making sure the types of a framework
are used appropriately, components’ contract validation and ensuring best programming
practices;

(5) operating Aspects such as synchronization, caching, persistence, transaction
management, security and load balancing;

(6) failure handling Aspects such as redirecting a failed call to a different service;

The ability to use aspects as add-ons over classes, as well as to plug in and unplug
different aspects with a compilation switch, is being perceived as the major advantage of
AspectJ/AOP.

In retrospect, although we missed a few kinds of Aspects and mentioned a couple that
didn’t yet emerge in practice, the analysis that Walter and I made back in 1994, which
was voicing a trend that was in the air, was a self-fulfilling prophecy! It is actually quite
amazing that later we, at PARC, were able to design a language that supports this
diversity of crosscutting concerns… with just a few key concepts. In other words: the path
I had started on – the design of concern-specific languages – wouldn’t scale!

Another interesting observation is that AspectJ does not support any of the run-time
performance Aspects that the group at PARC was focusing on before I joined. This
doesn’t mean that those Aspects are irrelevant; it simply means that AspectJ doesn’t
provide the kinds of referencing mechanisms that are necessary to support them.

One last comment on whether the broad AOP thesis – i.e. that it leads to better programs
– has been validated or not. I don’t have enough data to be able to draw any scientific
conclusion. My recent poking at the AspectJ users gave me anecdotal evidence, as some
users described their systems and commented on their positive experiences. From where I
stand now, which is relatively far from where I used to be, I can see that AOP is
extremely popular. Maybe the academic thesis doesn’t matter!, as it never mattered for all
other languages (Lisp, C++, Java, etc.), and as long as AOP helps solving some practical
software problems.

6 The Essence of AOP and Future Challenges
What is it about Aspects that makes them both attractive to researchers and useful to
practitioners? And where can we go from here? I haven’t worked in AOP for a couple of

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

years, but being as fascinated by languages as I was then, it’s very interesting to try to
answer these questions.

First of all, programming languages are incredibly restrictive programming systems.
They all have one fundamental weakness. They emphasize the fact that they are a means
to define computational processes and they ignore the fact that they are a means for
humans to write down, and read, computational processes. Humans don’t think using any
of the existing programming languages. Even if we do, we certainly haven’t been writing
down structured ideas for thousands of years using those languages. We have been using
natural languages. That has worked out quite well. Natural languages are as general-
purpose as languages can get. They contain an extremely rich and diverse set of
constructs that allow us to write down and enormous amount of ideas concisely and in
modular ways that can be easily understood by others.

Computer systems, of course, are different. I am not suggesting that programming
languages should have a natural language interface. That has been suggested a long time
ago (e.g. Sammet 1966, Ballard and Biemann 1979) and it has been done before (e.g.
Hypertalk (Winkler et al. 1994) and NaturalJava (Price et al. 2000)); the result is always
limited or dubious. However, I am suggesting that programming language designers
should pay more attention to the way natural languages work and the way we structure
ideas with them. This is related to what I think is the major contribution of AOP to the
next generation of programming systems.

Take tracing, for example. When we think of tracing we formulate something like this:
“for all methods, call Trace.in before they start executing and Trace.out after they finish
executing.” However, all programming languages will force us to transform this sentence
into something like this: “In method A, call Trace.in; … call Trace.out; return. In method
B, etc.” So what is it about the first representation of the intention that’s better than the
second, and how does the natural language help? In this case it’s the references to “all
methods”, “before … executing” and “after … executing”. That’s the power of AspectJ:
it supports a richer set of structural and temporal referencing that follows what we have
in natural languages. AspectJ does it in a way that seems to be very useful for
practitioners: it allows the encapsulation of these forms in modules that can be added to
or removed from the applications with a compilation switch. In other words, writing a
tracing aspect is like writing a different chapter, or section, in a book.

So, what makes an Aspect be an Aspect, before we even think of programming it with
AspectJ? Given the name we chose for it, which clearly influences our perception,
Aspects are software concerns that affect what happens in the Objects but that are more
concise, intelligible and manageable when written as separate chapters of the imaginary
book that describes the application. This pseudo-definition of Aspect aligns well with
what users have been using AspectJ for. The structural and temporal referencing in
AspectJ are essential mechanisms for achieving the separation between the Objects and
those other concerns. Those mechanisms are also natural: we would use those kinds of
referential relations if we were to write it in English or Portuguese. But the need for
better referencing mechanisms doesn’t end with what the word “Aspect” conveys.

On the way to future challenges, I’ll do a brief incursion into Linguistics. Linguistics has
been studying a large super-set of the constructs that AspectJ supports: referentiality

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

between utterances – the subject matter of binding theory draws its roots from Chomsky's
pioneering work. In Natural Languages, pronouns (e.g. this, that, it, her, which, etc.) are
examples of such referential relations, but they are not the only ones. In general
linguistics, referential dependence is studied regardless of morphological form, regardless
of whether it is context-dependent or context-free and regardless of whether it is about
objects or about time. For example, references can be: lists of nouns such as “The
president, the cat, the resident and the hat”; constraints on nouns such as “colorless
liquids”; temporal references such as “after reading the input stream”; and combinations
of the above. Note that these are forms we use intuitively, that make texts very concise
and that allow us to organize our ideas as optimally as we can. This very rich set of
references is what allows us, for example, to divide specification manuals into chapters
and sections that are related but loosely coupled; it is also what allows us to make a
statement and add more to it at a later point. If we didn’t have these referential forms we
would, indeed, have a hard time communicating.

Programming languages support a very small set of referential relations. In particular,
reflective references, groups and temporal references are, practically, inexistent. They can
be simulated by combinations of computation and new nouns. And that’s exactly one of
the things that make programs much more complex than they should be: programmers
have to express a rich set of referencing forms using a very small set of referencing
forms. In the process, intentions get diluted and tangled.

The future of AOP will probably benefit from removing the word “Aspect” out of its
name! What’s important for the next generation of programming languages is the
exploration of the rich set of referential relations we find in natural languages. That will
allows us to appropriately implement pieces of program specification not only as separate
chapters, but also as sections, paragraphs and even sentences, in a way that’s much more
natural; it will help avoid redundancy, temporary variables and all sorts of programming
oddities. This is, of course, a challenge for language designers and I have only some
fuzzy ideas about how those languages should look like. It seems to me that the
conceptual framework that’s available from Linguistics is an excellent framework for
programming languages too.

Acknowledgements

Thanks to John Lamping for reading an earlier draft of this paper and pointing out some
memory lapses and inconsistencies. Thanks also to Mik Kersten for proofreading the
paper.

References

Aksit M., Bergmans L., and Vural S. 1992. An Object-Oriented Language-Database Integration
Model: The Composition-Filters Approach. In O. Lehrman Madsen, editor, European Conference
on Object-Oriented Programming (ECOOP), pages 372:396, Utrecht, The Netherlands, June/July
1992. Springer Verlag, Lecture Notes in Computer Science. Vol. 615.

Aksit M., Bosch J., van der Sterren W., and Bergmans L. 1994 Real-Time Specification
Inheritance Anomalies and Real-Time Filters. In Mario Tokoro and Remo Pareschi, editors,

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

European Conference onObject-Oriented Programming (ECOOP), pages 386:407, Bologna, Italy,
July 1994. Springer Verlag, Lecture Notes in Computer Science. Vol. 821.

Aksit M., Wakita K., Bosch J., Bergmans L., and Yonezawa A. 1994. Abstracting Object
Interactions using Composition-Filters. In M. Guerraoui, O. Nierstrasz, and M. Riveill, editors,
Object-Based Distributed Processing. Springer Verlag, Lecture Notes in Computer Science, 1994.

Ballard, B. and Biemann, A. 1979. Programming in Natural Language: NLC as a Prototype. Proc.
ACM/CSC-ER Annual Conference, 228-237.

Bergmans L. 1994. Composing Concurrent Objects. PhD thesis, University of Twente, Enschede,
The Netherlands, July 1994.

Barbacci M. and Wing J. 1986. Specifying Functional and Timing Behavior for Real-Time
Applications. Technical Report CMU/SEI-86-TR-4 ADA178769, Software Engineering Institute
(Carnegie Mellon University), 1986.

Frølund S. and Agha G. 1993. A Language Framework for Multi-Object Coordination. In Oscar
M. Nierstrasz, editor, European Conference onObject-Oriented Programming (ECOOP), pages
346-360, Kaiserslautern, Germany, July 1993. Springer Verlag, Lecture Notes in Computer
Science. Vol. 707.

Gamma E., Helm R., Johnson R., and Vlissides J. 1994. Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing Series. Addison-Wesley, Reading, MA,
October 1994. ISBN 0-201-63361-2.

Grosso W. 2002. Aspect-Oriented Programming and AspectJ. In Dr. Dobbs Journal. August
2002. http://www.ddj.com/articles/2002/0208/

Harrison W. and Ossher H. 1993. Subject-oriented programming (a critique of pure objects). In
proc. Object-Oriented Programming Systems Languages and Applications (OOPSLA), pp.411-
428. 1993.

Honda Y. and Tokoro M. 1992. Soft Real-Time Programming through Reflection. In
International Workshop on Reflection and Meta-Level Architecture, pages 12:23, Tama-City,
Tokyo, Japan, November 1992.

Hürsch W. and Lopes C.V. 1995. Separation of Concerns. Northeastern University, College of
Computer Science Technical Report NU-CCS-95-03. February 1995.
ftp://ftp.ccs.neu.edu/pub/people/crista/publications/techrep95/index.html

Irwin, J., Loingtier, J.-M., Gilbert, J.R., Kiczales, G., Lamping, J., Mendhekar, A. and
Shpeisman, T. 1997. Aspect-oriented programming of sparse matrix code. Scientific Computing
in Object-Oriented Parallel Environments. First International Conference, ISCOPE 97.
Proceedings. Springer-Verlag, 1997. p.249-56.

Jacobson I. 1986. Language Support for Changeable Large Real Time Systems. In Proc.
Conference on Object-Oriented Programming Systems, Tools and Applications (OOPSLA’86).
ACM Press. pp. 377-384.

Kiczales G., des Rivieres J., and Bobrow D.G. 1991. The Art of the Metaobject Protocol. The
MIT Press, Cambridge, Massachusetts, 1991. ISBN 0-262-11158-6 (hc.).

Kiczales G. and Andreas Paepcke. 1995. Open Implementations and Metaobject Protocols.
Tutorial slides and notes.
http://www2.parc.com/csl/groups/sda/publications/papers/Kiczales-TUT95/for-web.pdf

Kiczales, G. 1996. Beyond the black box: open implementation. IEEE Software, vol.13, (no.1),
IEEE, Jan. 1996.

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

Kiczales G., Lamping J., Lopes C., Maeda C., Mendhekar A. and Murphy G. 1997. Open
Implementation Design Guidelines. In Proc. 19th International Conference on Software
Engineering (ICSE). ACM Press. 1997.

Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J.-M. and Irwin J.
Aspect-Oriented Programming. 1997. In Proc. 11th European Conference on Object-Oriented
Programming (ECOOP). Springer-Verlag LNCS 1241. June 1997.

Laddad R. 2002. I want my AOP! In Java World magazine. January, March and April 2002.

Lesiecki N. 2002. Test flexibility with AspectJ and mock objects. In Java Technology Zone for
IBM’s Developer Works. May 2002.

Lieberherr K.J., Silva-Lepe I., and Xiao C. 1994. Adaptive object-oriented programming using
graph-based customization. Communications of the ACM, 37(5):94:101, May 1994.

Lieberherr K.J., Orleans D. and Ovlinger J. 2001. Aspect-Oriented Programming with Adaptive
Methods. In Communications of the ACM 44(10). October 2001.

Liskov B. and Scheifler R. 1983. Guardians and Actions: Linguistic Support for Robust,
Distributed Programs. ACM Transactions on Programming Languages and Systems,
5(3):381:404, July 1983.

Lopes C.V. and Lieberherr K.J. 1994. Abstracting Process-to-Process Relations in concurrent
Object-Oriented Applications. In Mario Tokoro and Remo Pareschi, editors, European
Conference onObject-Oriented Programming (ECOOP), pages 81:99, Bologna, Italy, July 1994.
Springer Verlag, Lecture Notes in Computer Science. Vol. 821.

Lopes C.V. and Lieberherr K.J. 1996. AP/S++: Case-study of a MOP for purposes of software
evolution. Cristina Lopes and Karl Lieberherr. In Proc. Reflection'96, San Francisco, California.
1996.

Lopes C. 1996. Adaptive Parameter Passing. In Proc. International Symposium on Object
Technologies for Advanced Software (ISOTAS’96). Springer-Verlag LNCS n.1049. Japan, 1996.

Lopes C. 1998. D: A Language Framework for Distributed Programming. PhD Thesis, College of
Computer Science, Northeastern University.

Lopes C. and Kiczales G. 1998. Recent Developments in AspectJ. In Proc. Aspect-Oriented
Programming Workshop at ECOOP’98. Workshop Reader, Springer-Verlag LNCS 1543. July
1998.

Maes P. 1987. Concepts and Experiments in Computational Re ection. In Norman Meyrowitz,
editor, Object-Oriented Programming Systems, Languages and Applications Conference
(OOPSLA), pages 147{155, Orlando, Florida, October 1987. ACM Press. Special Issue of
SIGPLAN Notices, Vol.22, No.12.

Magee J., Kramer J., and Sloman M. 1989. Constructing Distributed Systems in CONIC. IEEE
Transactions on Software Engineering, 15(6):663:675, June 1989.

Mahoney J.V. 1995. Functional Visual Routines. Xerox Palo Alto Research Center Technical
Report SPL95-069, July 1995.

Matsuoka S. and Yonezawa A. 1993. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. In Gul Agha, Peter Wegner, and Akinori Yonezawa, editors,
Research Directions in Concurrent Object-Oriented Programming, chapter 1, pages 107:150. The
MIT Press, Cambridge, Massachusetts, 1993.

UCI-ISR-02-5

Copyright © 2002 by the author. All rights reserved.

Mendhekar A., Kiczales G. and Lamping J. 1997. RG: A Case-Study for Aspect-Oriented
Programming. Xerox Palo Alto Research Center Technical Report SPL97-009 P9710044.
February 1997.

Okamura H. and Ishikawa Y. 1994. Object Location Control Using Meta-level Programming. In
Mario Tokoro and Remo Pareschi, editors, European Conference on Object-Oriented
Programming (ECOOP), pages 299:319, Bologna, Italy, July 1994. Springer Verlag, Lecture
Notes in Computer Science. Vol. 821.

Orleans D. and Lieberherr K.J. 2001. DJ: Dynamic Adaptive Programming in Java. In Proc.
Reflection 2001. Springer-Verlag.

Price D., Riloff E., Zachary J. and Harvey B. 2000. NaturalJava: A Natural Language Interface
for Programming in Java. Proc. ACM Intelligent User Interfaces Conference.

Reghizzi C. S. and de Paratesi G.G. 1991. Definition of Reusable Concurrent Software
Components. In Pierre America, editor, European Conference on Object-Oriented Programming
(ECOOP), pages 148:166, Geneva, Switzerland, July 1991. Springer Verlag, Lecture Notes in
Computer Science. Vol. 512.

Sammet, J. 1966. The Use of English as a Programming Language. Comm. ACM, 9(3), 228-230.

Silva-Lepe I., Hursch W., and Sullivan G. 1994. A Report on Demeter/C++. C++ Report,
6(2):24:30, February 1994.

Smith B.C. 1984. Reflection and Semantics in Lisp. In ACM Symposium on Principles of
Programming Languages, pages 23:35, Salt Lake City, UT, January 1984. ACM Press.

Sousa P., Sequeira M., Ferreira P., Zúquete A., Lopes C., Pereira J., Guedes P. and Alves
Marques J. 1993. Distribution and Persistence in the IK Platform: Overview and Evaluation. In
Usenix Computing Systems Journal 6(4), Fall 1993.

Spurlin V. 2002. Aspect-Oriented Programming with Sun ONE Studio. In Sun ONE Studio
Developer Resource page. October 2002. http://forte.sun.com/ffj/articles/aspectJ.html

Steele G. 1990. Common Lisp: The Language. Second Edition. Digital Press.

Takashio K. and Tokoro M. 1992. DROL: An Object-Oriented Programming Language for
Distributed Real-Time Systems. In Andreas Paepcke, editor, Object-Oriented Programming
Systems, Languages and Applications Conference (OOPSLA), pages 276:294, Vancouver,
Canada, October 1992. ACM Press.

Walker R.J., Baniassad E.L.A., Murphy G.C. An initial assessment of aspect-oriented
programming. 1999. Proceedings of the 21st International Conference on Software Engineering
(ICSE '99), Los Angeles, CA, USA, 16-22 May 1999. ACM, 1999. p.120-30.

Watanabe T. and Yonezawa A. 1990. Reflection in an Object-Oriented Concurrent Language. In
Akinori Yonezawa, editor, ABCL: An Object-Oriented Concurrent System, chapter 3, pages 45-
70. The MIT Press, Cambridge, Massachusetts, 1990. ISBN 0-262-24029-7.

Winkler D., Kamins S. and DeVoto J. 1994. Hypertalk 2.2: The Book. Random House.

Zeidler C. and Gerteis W. 1992. Distribution: Another Milestone of Application Management
Issues. In G. Heeg, B. Magnusson, and B. Meyer, editors, Technology of Object-Oriented
Languages and Systems (TOOLS Europe), pages 87-99, Dortmund, Germany, March 1992.

