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Abstract:

 

 The term “Aspect-Oriented Programming” (AOP) came into existence sometime

between November of 1995 and May of 1996, at the Xerox Palo Alto Research Center (PARC).

AOP was based on an extensive body of prior work, but somehow the existing terminology wasn’t

appropriate for describing what we were doing. The new programming technology we were

beginning to devise was going to change the world! In this article I will give my own account of

how AOP – the ideas, the technologies and the name – came to be. But History is just marginally

interesting if one doesn’t make the effort to learn from it and apply that knowledge in things that

are still to come. AOP didn’t quite “change the world” but, no doubt, it had an impact in research

communities and in programming at- large. There are valuable lessons to be learned from the

emergence of AOP, and an analysis of those is the ultimate goal of this article.
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Abstract 
The term “Aspect-Oriented Programming” (AOP) came into existence 
sometime between November of 1995 and May of 1996, at the Xerox Palo 
Alto Research Center (PARC). AOP was based on an extensive body of prior 
work, but somehow the existing terminology wasn’t appropriate for describing 
what we were doing. The new programming technology we were beginning to 
devise was going to change the world! 
In this article I will give my own account of how AOP – the ideas, the 
technologies and the name – came to be. But History is just marginally 
interesting if one doesn’t make the effort to learn from it and apply that 
knowledge in things that are still to come. AOP didn’t quite “change the 
world” but, no doubt, it had an impact in research communities and in 
programming at-large. There are valuable lessons to be learned from the 
emergence of AOP, and an analysis of those is the ultimate goal of this article. 

 

1 A Matter of Style 
Giving an historical perspective of a technology involves stating facts as much as it 
involves describing the technical context in which the technology emerged and 
understanding the dynamics of the group of people who created it. Having been part of 
that group, I am in a privileged position to tell the AOP story, or at least a rendition of 
that story. Like most historical perspectives, this one is based on facts, but the 
interpretations and comments are entirely my own. Also like most historical perspectives, 
this one is incomplete: it focuses on the period 1995-1998, the time when AOP and, later, 
AspectJ emerged. A lot had happened before and a lot has happened since then.  

AOP, as such, started emerging in 1995 when I was already at PARC as a visiting 
student. In the years that followed, one of the types of questions I got asked more often 
was “what is AOP?” Is it a programming language? Macros in disguise? A design 
methodology? A clever pre-processor? Meta-programming? How is this different from X 
(replace X with your favorite programming trick or language feature)?… The other 
question I got asked frequently was “what are aspects?” Synchronization and tracing feel 
like aspects but what else? And what makes an aspect be an aspect, anyway? … 

As I’m writing this article, seven years later, I have good answers for all of these 
questions. But that wasn’t the case back in 1995-1998. In fact, many brilliant minds have 
blamed the AOP group for propagating subversive ideas without having clear definitions 
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for what we were trying to do. They were right: our definitions were fuzzy and got 
clearer over time. Back then, we had two options: we could lock ourselves in the office 
for a few years, brainstorm and beat the thing to death until we figured it all out; or we 
could bring a semi-baked idea to the public and iterate with a larger community until the 
clear definitions would emerge. We chose the latter. The reasons for this choice are as 
much pragmatic as they are a matter personal style. The pragmatic reasons included the 
following. First, we all believed that the validation of the AOP thesis (i.e. that it led to 
better programs) could only be done outside the controlled environment of our offices. So 
there was no point in locking ourselves up to come up with a beautiful formal semantics, 
because that would miss the core of the thesis. Second, we also believed that what we 
were doing crosscut the boundaries of the traditional communities in software 
engineering and programming languages. We needed to get early input from different 
kinds of people, especially from “real programmers,” our ultimate valuators. 

Many researchers will probably resonate with this need to reach out in order to validate 
their work; others won’t. Again, a matter of style. But among those that do, not many can 
do it successfully, even when their work is impressive. It takes financial support, a good 
team and a good team leader – these are all management issues that many researchers 
tend to overlook. The popularity of AOP and AspectJ is due, firstly, to Gregor Kiczales, 
not only for his technical leadership but also to his natural ability to secure resources and 
attract people.  

2 Research Trends in the Early 90s  
In writing this section, I have consulted a technical report written by my colleague Walter 
Hürsch and myself at the end of 1994 (Hürsch and Lopes 1995). That report was entitled 
“Separation of Concerns” and it was written when I was still at Northeastern University. 
In retrospect, it is evident that we missed a few important pieces of work and that we had 
a somewhat narrow vision of what it was that was being separated. But overall, that 
report did a good job in capturing a trend that was in the air, and that is the reason why I 
am evoking it here. People were talking about “separation of concerns;” our report 
captured the building blocks and the conceptual glue of what later became AOP and the 
AOP community. For reasons that fall out of the scope of this article, Walter and I 
stopped working on that report. I continued working on my thesis, which focused in 
concurrency and distribution Aspects.  

What follows is a summary of that report. Parts in italics are verbatim text. In reading it, 
the reader should place him/herself in 1994. 

2.1 Formulation of the Problem 
The increasing complexity of today's software applications and the advent of novel and 
innovative technology make it necessary for programs to incorporate and deal with an 
ever greater variety of special computing concerns such as concurrency, distribution, 
real-time constraints, location control, persistence, and failure recovery. Underlying all 
of these special purpose concerns is the basic concern responsible for the fundamental 
computational algorithm and the basic functionality. Special purpose concerns exist to 
either fulfill special requirements of the application (real-time, persistence, distribution), 
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or manage and optimize the basic computational algorithm (location control, 
concurrency). 

Typical approaches to integrate an additional concern have been to extend a given 
programming language by providing a few new programming language constructs that 
address the concern. An example of such an extension is the Distributed Real-time Object 
Language DROL (Takashio and Tokoro 1992), an extension of C++ with the capability 
of describing distributed real-time systems. 

Even though the concerns may be separated conceptually and incorporated correctly, 
commingling them in the code brings about a number of problems:  

• Programming intertwined code is hard and complex since all concerns have to be 
dealt with at the same time and at the same level. The extended programming 
language provides no adequate abstraction of concerns at the implementation 
level. 

• Intertwined code is hard to understand because of the above lack of abstraction. 

• Commingled code is hard to maintain and modify because the concerns are 
strongly coupled.   

• Specific to object-oriented systems, the intertwined code gives rise to inheritance 
anomalies (Aksit et al. 1994, Matsuoka and Yonezawa 1993) due to the strong 
coupling of the different concerns. It becomes impossible to redefine a method 
implementation or the commingled special concern in a subclass without 
redefining both. 

Many researchers have recognized the above problems for single concerns in their 
specific area of expertise and have started to address them.  Many devised techniques for 
separating individual concerns (Aksit et al. 1992, Aksit et al. 1994, Honda and Tokoro 
1992, Okamura and Ishikawa 1994, Aksit, Wakita et al. 1994, Lopes and Lieberherr 
1994, Lieberherr et al. 1994). 

2.2 Analysis of the Problem and Specialized Solutions 
For software concerns, we distinguished two different levels of separation: 

Conceptual level. At the conceptual level, the separation of concerns needs to address 
three issues. 1) Provide a sufficient abstraction for each concern as an individual 
concept. 2) Ensure that the individual concepts are primitive, in the sense that they 
address the natural concerns in the mind of the programmer. 

Implementation level. At the implementation level, the separation of concerns needs to 
provide an adequate organization that isolates the concerns from each other. The goal at 
this level is to separate the blocks of code which address the different concerns, and 
provide for a loose coupling of them. 

The concerns identified at the conceptual level are mapped into the implementation level 
using a programming language. Separation of concerns at the conceptual level is 
generally considered a primary means to manage complexity in all engineering 
disciplines. However, few programming languages allow these abstractions to actually 
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be separately programmed. The resulting code organization is monolithic, intertwining 
statements for different purposes. 

We believe that programming all concerns in one monolithic program block increases 
complexity considerably and unnecessarily. By abstracting concerns out and separating 
them, programming individual concerns becomes substantially less complex, and code 
can be effectively reused. 

We turned then to some approaches that had been suggested in the literature, including 
the work of our own group, Demeter (Lieberherr et al. 1994, Silva-Lepe et al. 1994). We 
identified a set of papers that focused on the separation of some concern from the basic 
algorithmic concern. Table 1 gives an overview of this survey; I have now added more 
references than what we originally had.   

 

Technique  → 

Concern ↓ 

Meta-level 
Programming 

Adaptive 
Programming 

Composition 
Filters 

Others 

Class 
organization 

 Lieberherr et al. 
1994 

  

Process 
synchronization 

Watanabe and 
Yonezawa 1990 

Lopes and 
Lieberherr 1994 

Aksit, Wakita  
et al. 1994 

Frølund and 
Agha 1993 

Reghizzi and 
Paratesi 1991 

Location 
control 

Okamura and 
Ishikawa 1994 

  Zeidler and 
Gerteis 1992 

Takashio and 
Tokoro 1992 

Real-time 
constraints 

  Aksit et al. 
1994 

Barbacci and 
Wing 1986 

Others    Liskov and 
Schifler 1983 

Jacobson 1986 

Magee et al. 
1989 

Table 1.  Approaches for separating certain concerns from the functionality of the programs. 

 

2.3 Identifying Software Concerns That Can Be Separated 
In the “Separation of Concerns” report, Walter and I then went on to analyzing the major 
software concerns that had been referenced in the literature. We focused on six: class 
organization, synchronization, location control (configuration issues), real-time 
constraints and failure recovery. We stressed the point that such as list was, by no means, 
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exhaustive; we believed it was open-ended. For the purposes of that report, we were 
simply compiling a set of software engineering concerns that had been frequently referred 
to in different papers as problematic. We mentioned other examples such as debugging, 
persistence and transaction management. 

In the years that followed, these concerns would be, again, the central focus of AOP-
related work. Later on, AspectJ introduced general-purpose aspect programming 
constructs that made the concept of “aspect” more general and helped open up the list. 

2.4 Separation Techniques 
In the report, we made a distinction between separation of concerns at the conceptual 
level and at the implementation level. The former may exist without the latter, and that 
was pretty much the state-of -the-art in 1994. There were, however, some programming 
techniques that looked promising for achieving the separation at the implementation 
level. Table 1 shows the techniques we identified at the time. What follows are the 
highlights of our analysis. 

2.4.1 Meta-Level Programming 
Meta-level programming is a well-know paradigm that has been documented in several 
publications (Smith 1984, Maes 1987, Watanabe and Yonezawa 1990, Kiczales et al. 
1991, Okamura and Ishikawa 1994, among others). A reflective system incorporates 
structures for representing itself. The basic constructs of the programming language, 
such as classes or object invocation, are described at the meta-level and can be extended 
or redefined by meta-programming. Each object is associated with a metaobject through 
a meta-link. The metaobject is responsible for the semantics of operations on the base 
object. 

How does meta-level programming support the separation of concerns at the 
implementation level? By trapping message sends and message receives to objects, 
metaobjects have the opportunity to perform work on behalf of the special purpose 
concerns. For example, they can check for synchronization constraints, assure real-time 
specifications, migrate parameters between machines, write logs, and so forth. This 
allows the base-level algorithms to be written without the special purpose concerns, 
which in turn can be programmed in the metaobjects. Also, by having structural 
reflection (meta-knowledge about the relations between classes), meta-level 
programming can achieve separation between algorithms and data organization. 

2.4.2 Adaptive Programming 
The work described in Lieberherr et al. 1994 and Lopes and Lieberherr 1994 presents 
adaptive software, a programming model based on code patterns. The relations between 
the data structures of the application is described by graphs (called class dictionary 
graphs) to which the patterns apply. A pattern compiler takes a set of patterns and a 
class dictionary graph and produces an object-oriented program. Code patterns are 
classified in different categories, each one capturing abstractions in programming: 

Propagation patterns define operations (algorithms) on the data. Propagation patterns 
identify subgraphs of classes that interact for a specific operation. References to the data 
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are made in a structure-shy manner through succinct subgraph specifications, and the 
actual code is defined in code wrappers along traversal paths. 

Transportation patterns abstract the concept of parameterization. They are used within 
propagation patterns in order to carry parameters in and out along the subgraphs. 

Synchronization patterns define synchronization schemes between the objects in 
concurrent applications. Their purpose is to control the processes' access to the 
execution of the operations. 

How does adaptive programming support the separation of concerns at the 
implementation level? Each pattern category addresses a different concern. The patterns 
that define a program can be viewed as the basic software components that interact with 
each other in a very loose manner through name resolution. Each pattern is quasi 
independent of both the other patterns and the data organization with the effect that 
changes in the class organization don't necessarily imply updates in the operations, and 
modifications of the algorithms don't necessarily imply changes in the synchronization 
scheme. 

2.4.3 Composition Filters 
The composition filter model is an extension of the conventional object-oriented model 
through the addition of object composition filters. For a detailed description of the model 
and its various applications we refer to Aksit et al. 1992, Bergmans 1994, Aksit et al. 
1994. Filters are first class objects and thus are instances of filter classes. The purpose of 
filters is to manage and affect message sends and receives. In particular, a filter specifies 
conditions for message acceptance or rejection, and determines the appropriate resulting 
action. Filters are programmable on a per class basis. The system makes sure that a 
message is processed by the filters before the corresponding method is executed: once a 
message is received, it has to pass through a set of input filters, and before a message is 
sent, it has to pass through a set of output filters. 

How do composition filters support the separation of concerns at the implementation 
level? Separation of concerns is achieved by defining a filter class for each concern. For 
example, in Aksit et al. 1994 a real-time filter RealTime was proposed to affect the 
real-time aspects of incoming messages. RealTime filters have access to a time object 
that is carried with every message and which specifies the earliest starting time and a 
deadline for the message. Each filter class is responsible for handling all aspects of its 
associated concern. The filter mechanism gives programmers a chance to trap both 
message receives and sends, and to perform certain actions before the code of the method 
is actually executed.  The resulting code is thus nicely separated into the special purpose 
concern (in the filter) and basic concern (in the method). 

Discussion 

Common to the above techniques is the fact that they provide some mechanism to 
intercept message sends and receives. Metaobject protocols perform the interception at 
the meta-level through computational reflection and reification of messages. Composition 
filters trap messages through the built-in filter mechanism. In both cases, interception 
was done at run-time. Adaptive programming achieves message interception at compile 
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time; the AP compiler detects when a method needs to be extended with code for special 
purpose concerns and inserts that code directly, i.e. a preprocessor.  

An important aspect of meta-level programming is that the separation of concerns is not 
imposed by the model. Rather, meta-level programming facilitates the separation of 
concerns by providing the reflective information about the constructs of the language 
itself. Programming the special purpose concerns at the meta-level is a strategy that may 
or may not be followed by the programmers. This is contrary to filters and Adaptive 
programming, which provide specific language constructs to achieve the separation of 
concerns. A consequence of this fact is that in both the filters approach and the code 
patterns approach a new language construct is necessary for each new concern to be 
dealt with, while in the meta-level programming it is not so. 

In retrospect, we missed at least one important piece of related work: Subject-Oriented 
Programming (Harrison and Ossher 1993). We also missed the opportunity to compare 
all these approaches with an emerging wave, design patterns (Gamma et al. 1994). But 
the important thing about our paper was to point out how the search for better expression 
mechanisms that focused on certain software development concerns were, in fact, driving 
a large number of research efforts at the time. This research was being driven by some 
common goal, and it was important for me to understand what that was; I wanted to 
formulate the kernel of the problem that was prompting so many solutions. Why weren’t 
C++ or Lisp good enough? 

3 The Birth of AOP @ PARC 
In the summer of 1995, as I was starting to devise a thesis proposal based on some of 
these ideas, I went on an internship to Xerox PARC, in Gregor Kiczales’ group. The 
group at the time was working on Open Implementations (Kiczales 1995, Kiczales 1996, 
Kiczales et al. ICSE 1997). During that summer I implemented Demeter’s traversals in a 
dialect of Scheme that supported OO reflection (Lopes and Lieberherr 1996), reinforcing 
the idea that reflection was a powerful programming technique that could support 
Demeter’s useful concepts for software evolution. Following that internship, I got an 
invitation to stay at PARC and continue my thesis work there. And so I did. The three 
years that followed were crucial both to the foundations of AOP and to me, personally: I 
defended my thesis at the end of the summer of 1997. Between 95 and 97, I continued to 
work under Karl Lieberherr’s supervision, but I had Gregor Kiczales as a co-advisor.  

I can’t remember the exact date when we decided to call our work “Aspect-Oriented 
Programming,” but I remember the term was suggested by Chris Maeda, the most 
business-oriented person of the group. Another name being tossed around was Aspectual 
Decomposition and Weaving (ADW), which was dropped. In my notebook, the first 
reference to “AOP” occurs at the end of November 1995. In January 1996, my notebook 
indicates that we were using Open Implementation and AOP at the same time, although 
for different pieces of the group’s work. By June of 1996 we submitted a proposal to 
DARPA entitled “Aspect-Oriented Programming.” By the end of 1996 the references to 
Open Implementation in my notebook disappeared.  

One other word that defined AOP was the word “weaver.” Again, I can’t remember the 
exact date when that word emerged and who suggested it, but it must have happened in 
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late 1995 or early 1996. Weaver was the name we gave to the pre-processors that would 
merge the components and aspect modules into base language source code. Later, this 
word was disfavored, because it had a strong connotation with text pre-processing. But 
“weaver” is still a good word for the AOP language processors, even as they are more 
than simple text pre-processing. The latest version of the AspectJ compiler is a good 
example of bytecode weaving that supports the join point model. 

In October of 1996 we held a workshop at PARC to which we invited certain people who 
were pursuing work related to separation of concerns. That was the kick-off meeting for 
discussing AOP beyond our group; I’ll say more about that in the next section. In this 
section, I’ll focus on work done by the group at PARC. 

3.1 RG 
One of the projects going on at PARC when I got there was RG (Mahoney 1995, 
Mendhekar 1997). The concern that was targeted in that project was the optimization of 
memory usage when composing functions containing loops over matrices. Although the 
optimization of memory usage has never, since then, been analyzed as an aspect, the RG 
example was actually very interesting, and it was chosen as the leading example in the 
first AOP paper (Kiczales et al. ECOOP 1997). The reason why RG is interesting is that 
the problem in it illustrates quite well, even better than the AspectJ examples, what I 
think is the essence of AOP: the need for more powerful referencing mechanisms in a 
programming language. The aspects in RG expressed issues like the following (citing 
from Mendhekar et al. 1997):  

“For every message send invoking a primitive filter, before computing 
its arguments, examine each argument and determine whether the loop 
structure needed to calculate the filter is compatible with the loop 
structure needed to calculate the argument. In that case, generate a 
single loop structure that computes both the argument value and the 
filter value, and replace the original message send with a send to the 
fused loop.” 

While I might chose a slightly different wording, what this quote shows is that there is 
the need to refer to lots of different things: “every message send” of a certain kind, 
“before computing its arguments” and certain “loop structures” in the target object and 
the arguments. These are all referencing needs that are not supported by most 
programming languages, and that the group at PARC was trying to support.  

3.2 AML 
A second project under way was Annotated MatLab, or AML (Irwin et al. 1997). The 
problem addressed here was the optimization of certain MatLab programs, again focusing 
on memory usage and operation fusion. The AML solution was to annotate the MatLab 
code with special directives, mostly declarative, that augmented the code with 
information so that a language processor could produce optimized code. 

There were many discussions among the group at PARC of whether AML was AOP or 
not. The final language annotations didn’t look like our other systems, in that they 
weren’t separated from the base code, they were still embedded in it. But, more 
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importantly, it was hard to express in plain English the abstractions that those directives 
captured. For this reason, AML didn’t make it to the ECOOP paper. It served, however, 
as a data point to formulate what aspect-oriented programming should(n’t) be like. 

3.3 ETCML 
Between the summer of 1995 and the summer of 1997, John Lamping was working, 
among other things, on a little system called Evaluation Time Control Meta Language 
(ETCML). The idea was to provide a set of directives that programmers could use in 
order to instruct the language processor about when to evaluate certain pieces of code. 
This work was in the sequence of the work in Reflection, more precisely to identify 
whether certain parts of the code should be evaluated at compile-time or at run-time. This 
came from the need to optimize metaobject protocols, making them be compiled away. 
The thesis there was that the language processor could not always determine the best 
evaluation time, and that input from the programmer would simplify immensely the task 
of the language processor.  In ETCML evaluation time was being analyzed as a software 
development concern that had important consequences on run-time performance.  

This work served as another interesting data point to think about software development 
concerns that were relatively independent from the functional code. 

3.4 DJ 
Prior to the doctorate program, my background was in distributed operating systems 
(Sousa et al. 1993). That led me to the search for better expression mechanisms for 
distributed programming. When I went to PARC I had outlined my thesis in two 
publications: an ECOOP paper (Lopes and Lieberherr 1994) and an ISOTAS paper 
(Lopes 1996). Those were the pillars of my dissertation: a couple of small languages for 
distributed programming which I called D (as in Distributed Programming) and their 
specification as an extension to Java, DJ (Lopes 1998). The two little languages were 
called COOL and RIDL.1 

DJ was different from RG, AML and ETCML, and used a technical approach more 
similar to that of Demeter (Lieberherr et al. 1994) than that used at the time by the group 
at PARC, i.e. Reflection (Kiczales 1991) and Open Implementation (Kiczales 1995, 
Kiczales 1996). For starters, DJ didn’t target run-time optimizations; it targeted program-
time expressiveness for some distributed programming concerns. RG, AML and ETCML 
had a top-down flavor: there was the notion of what a well designed program should look 
like and they were adding more instructions for tuning the performance without 
modifying the original well-designed programs. DJ had a bottom-up flavor: based on 
what distributed programs looked like, usually messy, I was trying to reorganize the code 
so that certain concerns that were tangled in Java could be untangled. In the process, I 
was defining language constructs that would allow me to do that. In the end, the 
combination of the top-down and bottom-up approaches proved to be fruitful. 

                                                 
1 A few years later, in 2000 or so, my advisor Karl Lieberherr decided to rename “Demeter/Java” to “DJ” 
(Orleans and Lieberherr 2001, Lieberherr et al. 2001). Are you confused yet? Throughout this article, DJ 
refers to my DJ back in 1995-1997; my advisor’s system will be called Demeter/Java, as it was at the time. 
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I didn’t particularly like the meta-level programming model. Certainly that model and the 
resulting techniques could be used to separate the concerns I was studying, but it felt 
awkward, albeit the only decent model at the time. Metaobjects have a beautiful run-time, 
interpretive semantics; I wanted a compile-time process. Compile-time reflection looses 
the beautiful simplicity of the run-time reflection model: metaobjects start to feel and act 
like macros. Therefore one is led to question whether that is the right model for compile-
time processes at all. I didn’t think so. I thought compile-time reflection introduced 
unnecessary complexity to the expression mechanisms I was looking for. Here is what I 
was looking for. 

For synchronization, I wanted to be able to say things like “before executing the 
operation take in BoundedBuffer objects, make sure no other thread is executing it in the 
same object and make sure the buffer is not empty; otherwise wait” or “after executing 
the operation take in BoundedBuffer objects, check if the buffer is empty and, if so, mark 
it as empty; also, check if the buffer was previously full and, if so, mark it as not full”. I 
also wanted to allow the expression of multi-object coordination schemes for concurrent 
agents like “before executing the operation activate in the Engine object, make sure the 
Door object is closed.” It seemed awkward to me that in order to say this I would have to 
define metaclasses, instantiate and associate a metaobject for every base object, trap 
every message sent to the base objects and execute their metaobjects code at those points. 
For multi-object coordination schemes, the one-to-one association between base and meta 
objects wasn’t even appropriate: we would want one single coordinator associated with 
the objects involved in the coordination scheme. 

For remote parameter passing, I wanted to be able to say things like “when the operation 
getBook of Library objects is invoked remotely, the returned Book object should be 
copied back to the client, but the field shelfCopies shouldn’t be included” or “when the 
operation borrowedBooks(User) of Library objects is invoked remotely, the only 
information that’s needed from the User parameter is the User’s name, so copy only 
that.” Again, it seemed awkward that in order to express this I would have to use the 
reflection model. 

Things would get even more confusing when these directives were to have a static code 
generation effect, which was what I was looking for. Although the reflection model might 
be a reasonable implementation model for the process, it certainly wasn’t true to the 
intentions of synchronization and remote parameter passing directives, as expressed in 
plain English. The problem, then, was the expression of referencing. 

So I came up with a simpler referencing mechanism, which was inspired by a body of 
previous work done by other people, but especially by my advisor Karl Lieberherr’s 
Demeter system. The directives, expressed separately from the classes, would refer to the 
object’s operations and internals by name: 
    coordinator BoundedBuffer { 
      selfex put, take; 
      mutex {put, take}; 
      condition empty = true, full = false; 
      put: requires !full; 
           on_exit { 
             if (empty) empty = false; 
             if (usedSlots == capacity) full = true; 
           } 
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      take: requires !empty; 
            on_exit { 
              if (full) full = false; 
              if (usedSlots == 0) empty = true; 
            } 
    } 
and 
    portal LibrarySystem { 
      boolean registerUser(User user) { 
        //Only strings. Everything else of User is excluded. 
        user: copy {User only all.String;} 
      }; 
      Book getBook(int isbn){ 
        //for the return object, exclude the field shelfCopies 
        return: copy {Book bypass shelfCopies;} 
      }; 
      BookList borrowedBooks(User user) { 
        //for return object, exclude the field shelfCopies 
        return: copy {Book bypass shelfCopies;} 
        // for User, bring only the name 
        user: copy {User only name;} 
      }; 
    } 
 

The binding, by direct naming, was unidirectional from these modules to the classes they 
referred to, and not the other way around. In other words, contrary to the dominating 
paradigm that said that each module must specify itself and its dependencies completely, 
this scheme allowed the definition of modules that would “impose” themselves on other 
modules, without an explicit request or permission from the latter. With this scheme, it 
was trivial to plug in and unplug concern-specific modules with a compilation switch. 

This scheme also scaled nicely for multi-object schemes: just add more class names to the 
list of classes the coordinators and the portals were associated with, and we could refer to 
the operations and internals of those classes. E.g.  
    coordinator Engine, Door {…} 

3.5 DJava 
Up until 1997, DJ was my own little piece of work, a system that I had carried with me 
from Northeastern, and one among others that we, as a group, were working on. In 1997 
things changed. 

I spent most of that year locked in my apartment writing my dissertation, so I didn’t 
participate much in the group’s activities. In the Spring, Gregor decided to invest the 
group’s resources into the implementation of a DJ weaver, a pre-processor written in 
Lisp. That first language implementation, called DJava, supported COOL and some of 
RIDL. Over that summer, they planned a usability study. The users were four summer 
interns. They wrote a distributed space war game with it. This sure came handy as I was 
writing the Validation chapter! A report of those activities can be found in my 
dissertation (Lopes 1998, chapter 5). We used that application as an example for a long 
time. 

At the end of the summer, Gregor decided to use DJava as the flagship system, the seed 
of what later became AspectJ.  
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In the meantime, back at Northeastern, Karl Lieberherr also decided to incorporate DJ 
into Demeter/Java. That happened from the end of 1997 throughout 1998. 

3.6 AspectJ 
The first version of AspectJ, made public in March of 1998, was a reimplementation of 
DJava. It supported only COOL. Another release followed soon, I believe it was AspectJ 
0.1. It included RIDL. A group at the University of British Columbia did some 
preliminary usability tests with this version. The results can be found in Walker et al. 
1999. 

As release 0.1 was coming out, at the end of April of 1998, AspectJ suffered a 
transfiguration. Gregor wanted to develop a general-purpose aspect language. DJ was a 
couple of concern-specific languages; it wasn’t very useful for general purpose 
programming. The decision to make AspectJ general-purpose wasn’t simple, at least for 
me. First, we had already released two versions, and changing the language’s philosophy 
would probably confuse those who had been using it as a reference for AOP. But, most 
importantly, it wasn’t at all obvious to me how a general-purpose aspect language would, 
indeed, be useful at the time, given the limited number of crosscutting concerns we had 
previously identified. What examples would we use to justify and explain it? 

In retrospect, it is clear my fears were inconsequential. AspectJ is a lot more useful for a 
larger number of software development needs than it would have been if we had 
continued the path we initially set, which was, by design, limited. DJ served AOP well, 
but it was time to grow it. What follows is a brief analysis of what it took to make the 
shift from concern-specific to general-purpose. 

In a paper we published in the summer of 1998 (Lopes and Kiczales 1998) we used the 
following picture to describe the range of languages we had been designing: 
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general-purpose 
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domain-specific 
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DJ 
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How did we move from concern-specific to general purpose? What was preserved, what 
was added and what was thrown away? This is my view about the transition process. 

Significant differences: 

• The concept of having coordinators and portals as first-order elements of the language 
went away. AspectJ has “aspects.” Aspects could, then, be coordinators and, 
eventually portals too. In fact, the subsequent releases of AspectJ had examples of 
aspects acting as coordinators and even reusable coordinator library aspects, which, 
because of the elimination of syntax, had a lot more lines of code than their DJ 
counterparts. But the good thing was that aspects could play lots of other roles 
without having to add more syntax. This was the design change that made AspectJ 
general-purpose. 

• Central to DJ and Demeter was the concept of programming crosscutting concerns 
separately from the “primary” concerns, using special kinds of modules that could not 
be referenced back by the objects. The existence of aspect instances, and the 
possibility of their being handled in programs, was a point of much discussion, and 
during the first 2+ years of development we went back and forth on this issue (I call it 
“the metaobject syndrome”). The compromise was to use a singleton aspect instance 
by default. This is still the policy in the latest version of AspectJ, although it now 
provides a richer set of aspect instance associations. Unlike DJ, AspectJ provides 
handlers to aspect instances through the aspectOf() operation.  

Significant clarifications: 

• The concept of join point, which had been identified in DJ, RG and other systems, 
was cleaned up. DJ had only two kinds of join points: the reception of messages by 
objects (in COOL and RIDL) and the sending of messages to objects (in RIDL). 
Gregor envisioned a much richer set of join points that are now part of the AspectJ 
join point model. This extension, by itself, didn’t make AspectJ general-purpose, but 
it certainly expanded the kinds of crosscuts it could express. In particular, this 
clarification allowed for the definition of control flow pointcuts, in later versions of 
AspectJ. 

Significant preservations: 

• Two basic principles were preserved: the presentation of AspectJ as an extension to 
Java and the implementation of the weaver as a compile-time process. Up until 
recently, the weaver was a pre-processor, transforming AspectJ programs into Java 
programs. Now it operates on bytecodes. 

• Central to DJ and Demeter was the concept of referring to the join points using a very 
simple direct naming scheme based on the names of the classes and the fields. Since 
in DJ the “aspect” modules could refer to several classes, it used qualified names such 
as ClassName.FieldName, which could include wild cards. One design point was very 
important: there was no notion of this naming process being a reflective operation. 
To understand this, we have to look at the alternatives. In other languages, e.g. CLOS 
(Steele 1990), once we have an object, we can get the names of classes and members 
through a reflective API, and we can build meta-programs with that. DJ did not have 
the base-meta distinction and the API that goes with it; it had a simple declarative 
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form for naming join points. That was preserved in AspectJ. The denotation of join 
points suffered several syntactic changes over the years, especially as we started to 
extend the kinds of join points supported by AspectJ. But unlike meta-programming, 
the naming is not programmatic but declarative: therefore, it feels very “natural,” as 
declarative programming usually does. 

• The temporal referencing before/after associated with join points existed in DJ and 
was preserved in AspectJ. (Note that before/after existed in other systems prior to DJ, 
namely in CLOS and in Demeter) 

• The static introduction of structure and behavior had been defined early on for COOL 
(Lopes and Lieberherr 1994). CLOS (Steele 1990) also supported a similar feature, 
but for run-time. Introduction generated much discussion, as it didn’t fit too well the 
run-time semantics of join points, but it was preserved in AspectJ. Over the years, it 
suffered several changes and clarifications. 

Past the transition from concern-specific to general-purpose aspect language, which 
happened in 1998, AspectJ evolved considerably. Part of that evolution was due to the 
commitment to a solid advanced development plan. The support from DARPA, starting 
in 1998, allowed Gregor to get the resources he needed. In early 1999 the weaver was 
rewritten in Java, which made the system much more portable than the previous Lisp 
version. At the end of that year, there were extensions to existing Integrated Development 
Environments. The design of AspectJ stabilized when it got to release 0.7, in the first half 
of 2000. That was also the time I started pursuing other interests.  

In form of conclusion to this section, it should be noted that lots of people were directly 
involved in the AOP project at PARC, at different times, besides Gregor Kiczales and 
myself. In the early days of AOP, the group included John Lamping, Anurag Mendhekar, 
Chris Maeda, Jean-Marc Loingtier and John Irwin. Venkatesh Choppella was there 
during the transition from DJ to the general-purpose AspectJ. Jim Hugunin and Mik 
Kersten joined in the transition to advanced development. Others, including Erik 
Hilsdale, joined after I left the project, and helped solidify the technology even further. 
Over the years, more than a dozen summer students contributed to the project; I can’t 
remember all their names, so I leave them nameless. 

4 Building Communities 
Communities rarely happen spontaneously. It takes time and planning to create and 
expand them. The AOP group at PARC has put a significant effort in building 
communities around the technology. Lots of people outside our group were instrumental 
in helping clarify the concepts, by providing alternative technologies and all sorts of 
feedback. There were/are two kinds of communities: researchers and practitioners. The 
bridge was done by very special people: early adopters, those people who work in 
industry but have the curiosity and the will to try out beta systems.  

4.1 Researchers 
As mentioned earlier in the paper, in October of 1996 we held a workshop at PARC to 
which we invited researchers we knew were working in similar things. There were about 
15 people in that meeting. The goal of that workshop was to discuss the major 
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characteristics of, and compare, the work we all were doing. That included AOP (i.e. the 
PARC people), Subject-Oriented Programming (Ossher and Tarr), Composition Filters 
(Aksit and Bergmans), Reflection (Matsuoka et al.) and Adaptive Programming 
(Lieberherr). It was a fruitful workshop. One of the outcomes was the plan for a larger 
workshop associated with ECOOP’97, with the title “Aspect-Oriented Programming.” 
That workshop attracted over 40 people and was a big success. AOP felt like the new kid 
on the OOP block. After that, there was an AOP workshop at ECOOP every year until 
2000, and one AOP workshop at ICSE’98. At every workshop, I always met new people 
whose work would fit and enrich the separation of concerns/AOP umbrella. 

4.2 Practitioners 
Building communities of users, especially the “real” ones, is much harder than building 
communities of researchers. By “real” users I mean software engineers developing 
products in companies. Researchers thrive on ideas; practitioners thrive on solid systems 
that solve their problems without introducing new problems. Nobody in industry will use 
a system just because it embodies an interesting idea that will potentially help them. 

Our first users were graduate students linked to the research community. They were the 
only ones who were motivated enough to skip through all the bugs! They weren’t really 
using the language to build anything; they were using it as a reference point. Our first 
“real” users started to show up in the beginning of 2000. At this point, the compiler was 
solid enough to handle a few hundred classes. The first users who contacted us had read 
about AOP, had played a bit with the examples in AspectJ and wanted to try it in parts of 
their projects, with our support, for debugging aspects. 

Early adopters are essential but they are also hard to deal with. They try something and 
they either like it – pushing it to the limit and asking for more – or drop it – silently. A 
handful of early users were patient enough to point out defects and weaknesses, and 
persisted in using AspectJ until it got a lot more solid. The vast majority were put off by 
the beta-ness of the language. Given that I left the AOP project later that year, I can’t say 
much about what happened next. Accounting from the traffic in the mailing list, the 
articles in industry magazines and the third-party IDE support, it looks like AspectJ has 
been embraced by a large community. Some of the AOP ideas are here to stay! 

5 Looking Back 
It is quite interesting to look back to the period 1994-1997 and to compare my vision of 
AOP at the time with what AOP is now. My notion of Aspects2 was based on systems I 
had worked on or studied. So, back then, according to my “Separation of Concerns” 
report, Aspects, independent of the techniques used to program them, were things like 
synchronization, remote parameter passing, configuration issues, real-time constraints, 
object structure, failure handling, persistence, security, debugging, etc. When I went to 
PARC, I found out about run-time performance Aspects such as memory optimization, 
loop fusion and evaluation time. Recently, I did a quick survey at what users are using 
AspectJ for, by looking at articles in industry magazines (Spurlin 2002, Grosso 2002, 

                                                 
2 I am using Aspect with a capital A to denote crosscutting concerns at the conceptual (design) level, not at 
the implementation (AspectJ) level. 
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Lesiecki 2002, Laddad 2002) and posting a question in the users list. The following 
categorization is an attempt at organizing my findings: 

(1) debugging and instrumentation Aspects such as tracing, logging, testing, profiling, 
monitoring and asserting. Most of the usages fall into this category. But some usages are 
very sophisticated. For example, one user reported having built a “virtual internal 
information bus” inside their application. 

(2) program construction Aspects such as mixins, multiple-inheritance (e.g. for bean 
construction) and views;  

(3) configuration Aspects such as managing the specifics of using different platforms and 
choosing appropriate name spaces for property management; 

(4) enforcement and verification Aspects such as making sure the types of a framework 
are used appropriately, components’ contract validation and ensuring best programming 
practices;  

(5) operating Aspects such as synchronization, caching, persistence, transaction 
management, security and load balancing;  

(6) failure handling Aspects such as redirecting a failed call to a different service; 

The ability to use aspects as add-ons over classes, as well as to plug in and unplug 
different aspects with a compilation switch, is being perceived as the major advantage of 
AspectJ/AOP. 

In retrospect, although we missed a few kinds of Aspects and mentioned a couple that 
didn’t yet emerge in practice, the analysis that Walter and I made back in 1994, which 
was voicing a trend that was in the air, was a self-fulfilling prophecy!  It is actually quite 
amazing that later we, at PARC, were able to design a language that supports this 
diversity of crosscutting concerns… with just a few key concepts. In other words: the path 
I had started on – the design of concern-specific languages – wouldn’t scale! 

Another interesting observation is that AspectJ does not support any of the run-time 
performance Aspects that the group at PARC was focusing on before I joined. This 
doesn’t mean that those Aspects are irrelevant; it simply means that AspectJ doesn’t 
provide the kinds of referencing mechanisms that are necessary to support them. 

One last comment on whether the broad AOP thesis – i.e. that it leads to better programs 
– has been validated or not. I don’t have enough data to be able to draw any scientific 
conclusion. My recent poking at the AspectJ users gave me anecdotal evidence, as some 
users described their systems and commented on their positive experiences. From where I 
stand now, which is relatively far from where I used to be, I can see that AOP is 
extremely popular. Maybe the academic thesis doesn’t matter!, as it never mattered for all 
other languages (Lisp, C++, Java, etc.), and as long as AOP helps solving some practical 
software problems. 

6 The Essence of AOP and Future Challenges 
What is it about Aspects that makes them both attractive to researchers and useful to 
practitioners? And where can we go from here? I haven’t worked in AOP for a couple of 
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years, but being as fascinated by languages as I was then, it’s very interesting to try to 
answer these questions. 

First of all, programming languages are incredibly restrictive programming systems. 
They all have one fundamental weakness. They emphasize the fact that they are a means 
to define computational processes and they ignore the fact that they are a means for 
humans to write down, and read, computational processes. Humans don’t think using any 
of the existing programming languages. Even if we do, we certainly haven’t been writing 
down structured ideas for thousands of years using those languages. We have been using 
natural languages. That has worked out quite well. Natural languages are as general-
purpose as languages can get. They contain an extremely rich and diverse set of 
constructs that allow us to write down and enormous amount of ideas concisely and in 
modular ways that can be easily understood by others. 

Computer systems, of course, are different. I am not suggesting that programming 
languages should have a natural language interface. That has been suggested a long time 
ago (e.g. Sammet 1966, Ballard and Biemann 1979) and it has been done before (e.g. 
Hypertalk (Winkler et al. 1994) and NaturalJava (Price et al. 2000)); the result is always 
limited or dubious. However, I am suggesting that programming language designers 
should pay more attention to the way natural languages work and the way we structure 
ideas with them. This is related to what I think is the major contribution of AOP to the 
next generation of programming systems. 

Take tracing, for example. When we think of tracing we formulate something like this: 
“for all methods, call Trace.in before they start executing and Trace.out after they finish 
executing.” However, all programming languages will force us to transform this sentence 
into something like this: “In method A, call Trace.in; … call Trace.out; return. In method 
B, etc.” So what is it about the first representation of the intention that’s better than the 
second, and how does the natural language help? In this case it’s the references to “all 
methods”, “before … executing” and “after … executing”. That’s the power of AspectJ: 
it supports a richer set of structural and temporal referencing that follows what we have 
in natural languages. AspectJ does it in a way that seems to be very useful for 
practitioners: it allows the encapsulation of these forms in modules that can be added to 
or removed from the applications with a compilation switch. In other words, writing a 
tracing aspect is like writing a different chapter, or section, in a book. 

So, what makes an Aspect be an Aspect, before we even think of programming it with 
AspectJ? Given the name we chose for it, which clearly influences our perception, 
Aspects are software concerns that affect what happens in the Objects but that are more 
concise, intelligible and manageable when written as separate chapters of the imaginary 
book that describes the application. This pseudo-definition of Aspect aligns well with 
what users have been using AspectJ for. The structural and temporal referencing in 
AspectJ are essential mechanisms for achieving the separation between the Objects and 
those other concerns. Those mechanisms are also natural: we would use those kinds of 
referential relations if we were to write it in English or Portuguese. But the need for 
better referencing mechanisms doesn’t end with what the word “Aspect” conveys.  

On the way to future challenges, I’ll do a brief incursion into Linguistics. Linguistics has 
been studying a large super-set of the constructs that AspectJ supports: referentiality 
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between utterances – the subject matter of binding theory draws its roots from Chomsky's 
pioneering work. In Natural Languages, pronouns (e.g. this, that, it, her, which, etc.) are 
examples of such referential relations, but they are not the only ones. In general 
linguistics, referential dependence is studied regardless of morphological form, regardless 
of whether it is context-dependent or context-free and regardless of whether it is about 
objects or about time. For example, references can be: lists of nouns such as “The 
president, the cat, the resident and the hat”; constraints on nouns such as “colorless 
liquids”; temporal references such as “after reading the input stream”; and combinations 
of the above. Note that these are forms we use intuitively, that make texts very concise 
and that allow us to organize our ideas as optimally as we can. This very rich set of 
references is what allows us, for example, to divide specification manuals into chapters 
and sections that are related but loosely coupled; it is also what allows us to make a 
statement and add more to it at a later point.  If we didn’t have these referential forms we 
would, indeed, have a hard time communicating. 

Programming languages support a very small set of referential relations. In particular, 
reflective references, groups and temporal references are, practically, inexistent. They can 
be simulated by combinations of computation and new nouns. And that’s exactly one of 
the things that make programs much more complex than they should be: programmers 
have to express a rich set of referencing forms using a very small set of referencing 
forms. In the process, intentions get diluted and tangled. 

The future of AOP will probably benefit from removing the word “Aspect” out of its 
name! What’s important for the next generation of programming languages is the 
exploration of the rich set of referential relations we find in natural languages. That will 
allows us to appropriately implement pieces of program specification not only as separate 
chapters, but also as sections, paragraphs and even sentences, in a way that’s much more 
natural; it will help avoid redundancy, temporary variables and all sorts of programming 
oddities. This is, of course, a challenge for language designers and I have only some 
fuzzy ideas about how those languages should look like. It seems to me that the 
conceptual framework that’s available from Linguistics is an excellent framework for 
programming languages too.  
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