Institute for Software Research

University of California, Irvine

Aspect-Oriented Programming:
An Historical Perspective
(What’s in a Name?)

Cristina Videira Lopes
University of California, Irvine
lopes@ics.uci.edu

December 2002

ISR Technical Report # UCI-ISR-02-5

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425
www.isr.uci.edu

www.isr.uci.edu/tech-reports.html

Aspect-Oriented Programming: An Historical Perspective
(What’s in a Name?)

Cristina Videira Lopes
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425

lopes@ics.uci.edu

ISR Technical Report # UCI-ISR-02-5

December 2002

Abstract: The term “Aspect-Oriented Programming” (AOP) came into existence sometime
between November of 1995 and May of 1996, at the Xerox Palo Alto Research Center (PARC).
AOQOP was based on an extensive body of prior work, but somehow the existing terminology wasn’t
appropriate for describing what we were doing. The new programming technology we were
beginning to devise was going to change the world! In this article I will give my own account of
how AOP — the ideas, the technologies and the name — came to be. But History is just marginally
interesting if one doesn’t make the effort to learn from it and apply that knowledge in things that
are still to come. AOP didn’t quite “change the world” but, no doubt, it had an impact in research
communities and in programming at- large. There are valuable lessons to be learned from the
emergence of AOP, and an analysis of those is the ultimate goal of this article.

UCI-ISR-02-5

Aspect-Oriented Programming: An Historical Perspective
(What'sin aName?)

CriginaVideiraLopes
Information and Computer Science
Universty of Cdifornia, Irvine
Irvine, CA 92697
|opes@ics.uci.edu

Abstract

The tem “Aspect-Oriented Programming” (AOP) came into exisence
sometime between November of 1995 and May of 1996, a the Xerox Pao
Alto Research Center (PARC). AOP was based on an extensive body of prior
work, but somehow the exigting terminology wasn't gppropriate for describing
what we were doing. The new programming technology we were beginning to
devise was going to change the world!

In this atice 1 will give my own account of how AOP — the idess, the
technologies and the name — came to be. But Higory is jus margindly
interesting if one does't make the effort to learn from it and apply that
knowledge in things that are ill to come. AOP didn't quite “change the
world” but, no doubt, it had an impact in research communities and in
progranming at-large. There are vauable lessons to be learned from the
emergence of AOP, and an andlysis of thoseisthe ultimate god of this article.

1 A Matter of Style

Giving an hidoricd perspective of a technology involves sating facts as much as it
involves describing the technicad context in which the technology emerged and
underganding the dynamics of the group of people who created it. Having been part of
that group, | am in a privileged pogtion to tell the AOP dory, or a least a rendition of
that sory. Like mogt higtorica perspectives, this one is based on facts, but the
interpretations and comments are entirdy my own. Also like most historica perspectives,
this one is incomplete: it focuses on the period 1995-1998, the time when AOP and, later,
AspectJ emerged. A lot had happened before and a lot has happened since then.

AOP, as such, darted emerging in 1995 when | was dready & PARC as a vigting
gudent. In the years that followed, one of the types of questions | got asked more often
was “what is AOP?’ Is it a progranming language? Macros in disguiss? A desgn
methodology? A clever pre-processor? Meta-programming? How is this different from X
(replace X with your favorite programming trick or language festure)?... The other
question | got asked frequertly was “what are agpects?” Synchronization and tracing feel
like aspects but what €lse? And what makes an aspect be an aspect, anyway? ...

As I'm writing this atide, seven years later, | have good answers for dl of these
questions. But hat wasn't the case back in 1995-1998. In fact, many brilliant minds have
blamed the AOP group for propagating subversve ideas without having dear definitions

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

for what we were trying to do. They were right: our definitions were fuzzy and got
clearer over time. Back then, we had two options. we could lock ourselves in the office
for a few years braingorm and beat the thing to death until we figured it dl out; or we
could bring a semi-baked idea to the public and iterate with a larger community until the
clear definitions would emerge. We chose the latter. The reasons for this choice are as
much pragmétic as they are a matter persond style. The pragmétic reasons included the
following. Fird, we dl believed tha the vaidation of the AOP thess (i.e that it led to
better programs) could only be done outsde the controlled environment of our offices. So
there was no point in locking oursdves up to come up with a beautiful forma semantics,
because that would miss the core of the thess. Second, we dso believed that what we
were doing crosscut the boundaries of the traditiond communities in software
engineering and programming languages We needed to get ealy input from different
kinds of people, especidly from “red programmers,” our ultimate valuators.

Many researchers will probably resonate with this need to reach out in order to vaidate
their work; others won't. Again, a matter of style. But among those that do, not many can
do it successfully, even when ther work is impressive. It takes financid support, a good
team and a good team leader — these are dl management issues that many researchers
tend to overlook. The popularity of AOP and Aspectd is due, firdly, to Gregor Kiczaes,
not only for his technica leadership but dso to his naturd &ability to secure resources and
attract people.

2 Research Trends in the Early 90s

In writing this section, | have consulted a technical report written by my colleague Water
Hirsch and mysdf at the end of 1994 (Hursch and Lopes 1995). That report was entitled
“Separation of Concerns’ and it was written when | was 4ill a Northeastern Universty.
In retrospect, it is evident that we missed a few important pieces of work and that we had
a somewhat narrow vison of what it was tha was being separated. But overdl, that
report did a good job in capturing a trend that was in the ar, and that is the reason why |
am evoking it here. People were taking about “separation of concerns” our report
captured the building blocks and the conceptud glue of what later became AOP and the
AOP community. For reasons that fal out of the scope of this article, Water and |
stopped working on that report. |1 continued working on my theds which focused in
concurrency and distribution Aspects.

What follows is a summary of that report. Parts in itaics are verbatim text. In reading it,
the reader should place him/hersdf in 1994.

2.1 Formulation of the Problem

The increasing complexity of today's software applications and the advent of novel and
innovative technology make it necessary for programs to incorporate and deal with an
ever greater variety of special computing concerns such as concurrency, distribution,
real-time constraints, location control, persistence, and failure recovery. Underlying all
of these special purpose concerns is the basic concern responsible for the fundamental
computational algorithm and the basic functionality. Special purpose concerns exist to
either fulfill special requirements of the application (real-time, persistence, distribution),

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

or manage and optimize the basic computational algorithm (location control,
concurrency).

Typical approaches to integrate an additional concern have been to extend a given
programming language by providing a few new programming language constructs that
address the concern. An example of such an extension is the Distributed Real-time Object
Language DROL (Takashio and Tokoro 1992), an extension of C++ with the capability
of describing distributed real-time systems

Even though the concerns may be separated conceptually and incorporated correctly,
commingling themin the code brings about a number of problems:

Programming intertwined code is hard and complex since all concerns have to be
dealt with at the same time and at the same level. The extended programming
language provides no adequate astraction of concerns at the implementation
level.

Intertwined code is hard to understand because of the above lack of abstraction.

Commingled code is hard to maintain and modify because the concerns are
strongly coupled.

Soecific to object-oriented systems, the intertwined code gives rise to inheritance
anomalies (Aksit et al. 1994, Matsuoka and Yonezawa 1993) due to the strong
coupling of the different concerns. It becomes impossible to redefine a method
implementation or the commingled special concern in a subclass without
redefining both.

Many researchers have recognized the above problems for single concerns in their
specific area of expertise and have started to address them. Many devised techniques for
separating individual concerns (Aksit et al. 1992, Aksit et al. 1994, Honda and Tokoro
1992, Okamura and Ishikawa 1994, Aksit, Wakita et al. 1994, Lopes and Lieberherr
1994, Lieberherr et al. 1994).

2.2 Analysis of the Problem and Specialized Solutions
For software concerns, we distinguished two different levels of separation:

Conceptual level. At the conceptual level, the separation of concerns needs to address
three issues. 1) Provide a sufficient abstraction for each concern as an individual
concept. 2) Ensure that the individual concepts are primitive, in the sense that they
address the natural concernsin the mind of the programmer.

I mplementation level. At the implementation level, the separation of concerns needs to
provide an adequate organization that isolates the concerns from each other. The goal at
this level is to separate the blocks of code which address the different concerns, and
provide for a loose coupling of them.

The concerns identified at the conceptual level are mapped into the implementation level
using a programming language. Separation of concerns at the conceptual level is
generally considered a primary means to manage complexity in all engineering
disciplines. However, few programming languages allow these abstractions to actually

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

be separately programmed. The resulting code organization is monolithic, intertwining
statements for different purposes.

We believe that programming all concerns in one monolithic program block increases
complexity considerably and unnecessarily. By abstracting concerns out and separating
them, programming individual concerns becomes substantially less complex, and code
can be effectively reused.

We turned then to some approaches that had been suggested in the literature, induding
the work of our own group, Demeter (Lieberherr et d. 1994, Slva-Lepe et a. 1994). We
identified a st of papers that focused on the separation of some concern from the basic
dgorithmic concern. Table 1 gives an overview of this survey; | have now added more
references than what we originaly had.

Technique ® Meta-level Adaptive Composition Others
_ Programming | Programming | Filters

Concern

Class Lieberherr et d.

organization 1994

Process Watanabe and Lopesand Aksit, Wakita Frdund and

synchronization | Yonezawa 1990 | Lieberherr 1994 | et d. 1994 Agha 1993
Reghizzi and
Parates 1991

Location Okamura and Zedler and

control Ishikawa 1994 Gerteis 1992
Takashio and
Tokoro 1992

Real-time Akst et d. Barbacci and

constraints 1994 Wing 1986

Others Liskov and
Schifler 1983
Jacobson 1986
Mageeet d.
1989

Table1. Approaches for separating certain concerns from the functionality of the programs.

2.3 Identifying Software Concerns That Can Be Separated

In the “Separation of Concerns’ report, Walter and | then went on to andyzing the mgor
software concerns that had been referenced in the literature. We focused on gx: dass
organizetion, synchronization, location control (configuration issues), real-time
congraints and falure recovery. We dressed the point that such as list was, by no means,

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

exhaudtive, we bdieved it was openrended. For the purposes of that report, we were
amply compiling a set of software engineering concerns that had been frequently referred
to in different papers as problematic. We mentioned other examples such as debugging,
persstence and transaction management.

In the years that followed, these concerns would be, again, the centra focus of AOP-
related work. Later on, Aspect] introduced generd-purpose aspect programming
constructs that made the concept of “ aspect” more genera and helped open up the lig.

2.4 Separation Techniques

In the report, we made a digtinction between separation of concerns a the conceptua
levd and & the implementation leve. The former may exis without the latter, and that
was pretty much the state-of -the-art in 1994. There were, however, some programming
techniques that looked promisng for achieving the separdion a the implementation
levd. Table 1 shows the techniques we identified a the time. What follows are the
highlights of our andysis.

2.4.1 Meta-Level Programming

Meta-level programming is a well-know paradigm that has been documented in several
publications (Smith 1984, Maes 1987, Watanabe and Yonezawa 1990, Kiczales et al.
1991, Okamura and Ishikawa 1994, among others). A reflective system incorporates
structures for representing itself. The basic constructs of the programming language,
such as classes or object invocation, are described at the meta-level and can be extended
or redefined by meta-programming. Each object is associated with a metaobject through
a meta-link. The metaobject is responsible for the semantics of operations on the base
object.

How does metalevd progranming support the separation of concerns a the
implementation leve? By trapping message sends and message receives to objects,
metaobjects have the opportunity to perform work on behalf of the special purpose
concerns. For example, they can check for synchronization constraints, assure real-time
specifications, migrate parameters between machines, write logs, and so forth. This
allows the base-level algorithms to be written without the special purpose concerns,
which in turn can be programmed in the metaobjects. Also, by having structural
reflection (meta-knowledge about the relations between classes), meta-level
programming can achieve separation between algorithms and data organization.

2.4.2 Adaptive Programming

The work described in Lieberherr et al. 1994 and Lopes and Lieberherr 1994 presents
adaptive software, a programming model based on code patterns. The relations between
the data structures of the application is described by graphs (called class dictionary
graphs) to which the patterns apply. A pattern compiler takes a set of patterns and a
class dictionary graph and produces an object-oriented program. Code patterns are
classified in different categories, each one capturing abstractionsin programming:

Propagation patterns define operations (algorithms) on the data. Propagation patterns
identify subgraphs of classes that interact for a specific operation. References to the data

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

are made in astructure-shy manner through succinct subgraph specifications, and the
actual code is defined in code wrappers along traversal paths.

Transportation patterns abstract the concept of parameterization. They are used within
propagation patternsin order to carry parametersin and out along the subgraphs.

Synchronization patterns define synchronization schemes between the objects in
concurrent applications. Their purpose is to control the processes access to the
execution of the operations.

How does adaptive programming support the separation of concerns a the
implementation leve? Each pattern category addresses a different concern. The patterns
that define a program can be viewed as the basic software components that interact with
each other in a very loose manner through name resolution. Each pattern is quas

independent of both the other patterns and the data organization with the effect that
changes in the class organization don't necessarily imply updates in the operations, and
modifications of the algorithms don't necessarily imply changes in the synchronization
scheme.

2.4.3 Composition Filters

The composition filter model is an extension of the conventional object-oriented model
through the addition of object composition filters. For a detailed description of the model
and its various applications we refer to Aksit et al. 1992, Bergmans 1994, Aksit et al.
1994. Filters arefirst class objects and thus are instances of filter classes. The purpose of
filters is to manage and affect message sends and receives. In particular, a filter specifies
conditions for message acceptance or rejection, and determines the appropriate resulting
action. Filters are programmable on a per class basis. The system makes sure that a
message is processed by the filters before the corresponding method is executed: once a
message is received, it has to pass through a set of input filters, and before a message is
sent, it has to pass through a set of output filters.

How do compostion filters support the separation of concerns a the implementation
levd? Separation of concerns is achieved by defining a filter class for each concern. For
example, in Aksit et al. 1994 a real-time filter Real Ti me was proposed to affect the
real-time aspects of incoming messages. Real Ti e filters have access to a time object
that is carried with every message and which specifies the earliest starting time and a
deadline for the message. Each filter class is responsible for handling all aspects of its
associated concern. The filter mechanism gives programmers a chance to trap both
message receives and sends, and to perform certain actions before the code of the method
is actually executed. The resulting code is thus nicely separated into the special purpose
concern (in thefilter) and basic concern (in the method).

Discussion

Common to the above techniques s the fact that they provide some mechanism to
intercept message sends and receives. Metaobject protocols perform the interception at
the meta-level through computational reflection and reification of messages. Composition
filters trap messages through the built-in filter mechanism. In both cases, interception
was done at run-time. Adaptive programming achieves message interception at compile

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

time; the AP compiler detects when a method needs to be extended with code for special
purpose concerns and inserts that code directly, i.e. a preprocessor.

An important aspect of meta-level programming is that the separation of concerns is not
imposed by the model. Rather, meta-level programming facilitates the separation of
concerns by providing the reflective information about the constructs of the language
itself. Programming the special purpose concerns at the meta-level is a strategy that may
or may not be followed by the programmers. This is contrary to filters and Adaptive
programming, which provide specific language constructs to achieve the separation of
concerns. A consequence of this fact is that in both the filters approach and the code
patterns approach a new language construct is necessary for each new concern to be
dealt with, while in the meta-level programming it isnot so.

In retrospect, we missed at least one important piece of related work: Subject-Oriented
Programming (Harrison and Ossher 1993). We aso missed the opportunity to compare
dl these gpproaches with an emerging wave, design patterns (Gamma et d. 1994). But
the important thing about our paper was to point out how the search for better expresson
mechanisms that focused on certain software developmert concerns were, in fact, driving
a large number of research efforts at the time. This research was being driven by some
common god, and it was important for me to understand what that was, | wanted to
formulate the kernd of the problem that was prompting so many solutions. Why weren't
C++ or Lisp good enough?

3 The Birth of AOP @ PARC

In the summer of 1995, as | was darting to devise a thesis proposal based on some of
these ideas, | went on an internship to Xerox PARC, in Gregor Kiczdes group. The
group a the time was working on Open Implementations Kiczales 1995, Kiczaes 1996,
Kiczaes et d. ICSE 1997). During that summer | implemented Demeter’s traversals in a
didect of Scheme that supported OO reflection (Lopes and Lieberherr 1996), reinforcing
the idea that reflection was a powerful programming technique that could support
Demeter's useful concepts for software evolution. Following that internship, | got an
invitation to stay & PARC and continue my thess work there. And so | did. The three
years that followed were crucid both to the foundations of AOP and to me, persondly: |
defended my thedis at the end of the summer of 1997. Between 95 and 97, | continued to
work under Karl Lieberherr’s supervision, but | had Gregor Kiczaes as a co-advisor.

| can't remember the exact date when we decided to cal our work “Aspect-Oriented
Programming,” but | remember the term was suggested by Chris Maeda, the most
business-oriented person of the group. Another name being tossed around was Aspectud
Decompostion and Weaving (ADW), which was dropped. In my notebook, the firgt
reference to “AOP” occurs a the end of November 1995. In January 1996, my notebook
indicates that we were usng Open Implementation and AOP a the same time, dthough
for different pieces of the group’'s work. By June of 1996 we submitted a proposa to
DARPA entitled “Agpect-Oriented Programming.” By the end of 1996 the references to
Open Implementation in my notebook disappeared.

One other word that defined AOP was the word “weaver.” Again, | can't remember the
exact date when that word emerged and who suggested it, but it must have happened in

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

late 1995 or early 1996. Weaver was the name we gave to the pre-processors that would
merge the components and aspect modules into base language source code. Later, this
word was disfavored, because it had a strong connotation with text pre-processing. But
“weaver” is dill a good word for the AOP language processors, even as they are more
than dmple text pre-processng. The latest verson of the Agpectd compiler is a good
example of bytecode weaving that supports the join point modd.

In October of 1996 we held a workshop at PARC to which we invited certain people who
were pursuing work related to separation of concerns. That was the kick-off meeting for
discussng AOP beyond our group; I'll say more about that in the next section. In this
section, I'll focus on work done by the group at PARC.

3.1 RG

One of the projects going on a PARC when | got there was RG (Mahoney 1995,
Mendhekar 1997). The concern that was targeted in that project was the optimization of
memory usage when composing functions containing loops over matrices. Although the
optimization of memory usage has never, snce then, been andyzed as an aspect, the RG
example was actudly very interesting, and it was chosen as the leading example in the
firss AOP paper (Kiczdes et d. ECOOP 1997). The reason why RG is interesting is that
the problem in it illusrates quite well, even better than the Aspect] examples, what |
think is the essence of AOP. the need for more powerful referencing mechanisms in a
programming languege. The aspects in RG expressed issues like the fallowing (cting
from Mendhekar et d. 1997):

“For every message send invoking a primitive filter, before computing
its arguments, examine each argument and determine whether the loop
dructure needed to cdculate the filter is compatible with the loop
dructure needed to cadculate the argument. In that case, generate a
gngle loop sructure that computes both the argument value and the
filter vaue, and replace the origind message send with a send to the
fused loop.”

While | might chose a dightly different wording, what this quote shows is that there is
the need to refer to lots of different things “every message send” of a certain kind,
“before computing its arguments’ and certain “loop structures’ in the target object and
the arguments. These ae dl referencing needs that are not supported by most
programming languages, and that the group a PARC was trying to support.

3.2 AML

A second project under way was Annotated MatLab, or AML (Irwin et a. 1997). The
problem addressed here was the optimization of certain MatLab programs, again focusing
on memory usage and operation fuson. The AML solution was to annotate the MatLab
code with gpecid directives, modly declarative, that augmented the code with
information so that alanguage processor could produce optimized code.

There were many discussons among the group a PARC of whether AML was AOP or
not. The find language annotations didn't look like our other systems, in that they
weren't separated from the base code, they were ill embedded in it. But, more

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

importantly, it was hard to express in plain English the abgtractions that those directives
captured. For this reason, AML ddn't make it to the ECOOP paper. It served, however,
as adata point to formulate what aspect-oriented programming should(n't) be like.

3.3 ETCML

Between the summer of 1995 and the summer of 1997, John Lamping was working,
among other things on a little sysem caled Evauaion Time Control Meta Language
(ETCML). The idea was to provide a st of directives that programmers could use in
order to indruct the language processor about when to evauate certain pieces of code.
This work was in the sequence of the work in Reflection, more precisdy to identify
whether certain parts of the code should be evaluated at compile-time or & run-time. This
came from the need to optimize metaobject protocols, making them be compiled away.
The theds there was that the language processor could not aways determine the best
evadudion time, and that input from the programmer would smplify immensdy the task
of the language processor. In ETCML evduation time was being andyzed as a software
development concern that had important consequences on run-time performance,

This work served as another interesting data point to think about software development
concerns that were relatively independent from the functiona code.

3.4 DJ

Prior to the doctorate program, my background was in distributed operating systems
(Sousa et d. 1993). That led me to the search for better expresson mechanisms for
digributed programming. When | went to PARC | had outlined my thess in two
publications. an ECOOP paper (Lopes and Lieberherr 1994) and an ISOTAS paper
(Lopes 1996). Those were the pillars of my dissertation: a couple of smal languages for
digributed programming which | cdled D (as in Didributed Programming) and their
gpecification as an extenson to Java, DJ (Lopes 1998). The two little languages were
called COOL and RIDL.*

DJ was different from RG, AML and ETCML, and used a technica approach more
amilar to that of Demeter (Lieberherr et a. 1994) than that used at the time by the group
a PARC, i.e. Reflection (Kiczdes 1991) and Open Implementation (Kiczaes 1995,
Kiczales 1996). For starters, DJ didn't target run-time optimizations, it targeted program:
time expressveness for some digtributed programming concerns. RG, AML and ETCML
had a top-down flavor: there was the notion of what a well designed program should look
like and they were adding more indructions for tuning the performance without
modifying the origind wel-desgned programs. DJ had a bottomup flavor: based on
what distributed programs looked like, usudly messy, | was tying to reorganize the code
S0 that certain concerns that were tangled in Java could be untangled. In the process, |
was defining language condructs that would dlow me to do that. In the end, the
combination of the top-down and bottom:-up approaches proved to be fruitful.

L A few years later, in 2000 or so, my advisor Karl Lieberherr decided to rename “ Demeter/Java’ to “DJ’
(Orleans and Lieberherr 2001, Lieberherr et al. 2001). Are you confused yet? Throughout this article, DJ
refersto my DJback in 1995-1997; my advisor’s system will be called Demeter/Java, asit was at the time.

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

| didn't paticularly like the meta-levd programming mode. Certainly that modd and the
resulting techniques could be used to separate the concerns | was dudying, but it fdt
awkward, abet the only decent modd a the time. Metaobjects have a beautiful run-time,
interpretive semantics; | wanted a compile-time process. Compile-time reflection looses
the beautiful smplicity of the run-time reflection model: metaobjects start to fed and act
like macros. Therefore one is led to question whether that is the right mode for compile-
time processes a dl. | didn't think so. | thought compile-time reflection introduced
unnecessary complexity to the expresson mechanisms | was looking for. Here is what |
was looking for.

For synchronization, | wanted to be able to say things like “before executing the
operation take in BoundedBuffer objects, make sure no other thread is executing it in the
same object and make sure the buffer is not empty; otherwise wat” or “after executing
the operation take in BoundedBuffer objects, check if the buffer is empty and, if so, mark
it as empty; dso, check if the buffer was previoudy full and, if so, mak it as not full”. |
a0 wanted to dlow the expresson of multi-object coordination schemes for concurrent
agents like “before executing the operation activate in the Engine object, make sure the
Door object is closed.” It seemed awkward to me that in order to say this | would have to
define metaclasses, indantiate and associate a metaobject for every base object, trap
every message sent to the base objects and execute their metaobjects code at those points.
For multi-object coordination schemes, the one-to-one association between base and meta
objects wasn't even appropriate. we would want one single coordinator associated with
the objects involved in the coordination scheme.

For remote parameter passing, | wanted to be able to say things like “when the operation
getBook of Library objects is invoked remotely, the returned Book object should be
copied back to the client, but the fidd shdfCopies shouldn't be included” or “when the
operation borrowedBooks(User) of Library objects is invoked remotdy, the only
information that's needed from the User parameter is the User’s name, o copy only
that.” Agan, it seemed awkward that in order to express this | would have to use the
reflection mode.

Things would get even more confusng when these directives were to have a dtatic code
generdion effect, which was what | was looking for. Although the reflection model might
be a reasonable implementation modd for the process, it certainly wasn't true to the
intentions of synchronizetion and remote parameter passing directives, as expressed in
plan English The problem, then, was the expression of referencing.

So | came up with a ampler referencing mechanism, which was inspired by a body of
previous work done by other people, but egpecidly by my advisor Karl Lieberherr's
Demeter system. The directives, expressed separately from the classes, would refer to the
object’ s operations and internas by name:

coordi nat or BoundedBuffer {
sel fex put, take;
mut ex {put, take};
condition enpty = true, full = fal se;
put: requires !full;
on_exit {
if (enpty) enpty = fal se;
if (usedSlots == capacity) full = true;

}

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

take: requires !enpty;
on_exit {
if (full) full = false;
if (usedSlots == 0) enpty = true
}
}

and

portal LibrarySystem {
bool ean regi sterUser(User user) ({
//Only strings. Everything el se of User is excluded.
user: copy {User only all.String;}

IE

Book get Book(int isbn){
//for the return object, exclude the field shel f Copi es
return: copy {Book bypass shel f Copi es; }

BéokList bor r onedBooks(User user) {

//for return object, exclude the field shel fCopies
return: copy {Book bypass shel f Copi es; }

/1 for User, bring only the nane
user: copy {User only nane;}

h
}

The binding, by direct naming, was unidirectiond from these modules to the classes they
referred to, and not the other way around. In other words, contrary to te dominging
paradigm that said that each module must specify itsdf and its dependencies completely,
this scheme dlowed the definition of modules that would “imposs” themsdves on other
modules, without an explicit request or permisson from the latter. With this scheme, it
wastrivid to plug in and unplug concern-pecific modules with a compilaion switch

This scheme dso scded nicdy for multi-object schemes: just add more class names to the
lig of classes the coordinators and the portals were associated with, and we could refer to
the operations and internals of those classes. E.g.

coordi nator Engi ne, Door {.}

3.5 DJava

Up until 1997, DJ was my own little piece of work, a sysem that | had carried with me
from Northeastern, and one among others that we, as a group, were working on. In 1997
things changed.

| spent most of that year locked in my gpartment writing my dissertation, so | didn't
paticipate much in the group’'s activities. In the Spring, Gregor decided to invest the
group’s resources into the implementation of a DJ weaver, a pre-processor written in
Lisp. That first language implementation, called DJava, supported COOL and some of
RIDL. Over tha summer, they planned a ussbility sudy. The users were four summer
interns. They wrote a digtributed space war game with it. This sure came handy as | was
writing the Vdidation chapter! A report of those activiies can be found in my
dissertation (Lopes 1998, chapter 5). We used that gpplication as an example for a long
time.

At the end of the summer, Gregor decided to use DJava as the flagship system, the seed
of what later became AspectJ.

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

In the meantime, back at Northeastern, Karl Lieberherr dso decided to incorporate DJ
into Demeter/Java. That happened from the end of 1997 throughout 1998.

3.6 AspectJ

The first verson of Agpect], made public in March of 1998, was a reimplementation of
DJava. It supported only COOL. Another release followed soon, | believe it was Aspect]
01 It included RIDL. A group a the Universty of British Columbia did some
preliminary usability tests with this verson. The results can be found in Waker et 4.
1999.

As release 0.1 was coming out, a the end of April of 1998, Aspect] suffered a
trandfiguration Gregor wanted to develop a genera-purpose aspect language. DJ was a
couple of concernspecific languages, it wasn't very ussful for generd purpose
progranming. The decison to make Aspect genera-purpose wasn't smple, a least for
me. First, we had dready released two versons, and changing the language' s philosophy
would probably confuse those who had been using it as a reference for AOP. But, most
importantly, it wasn't a dl obvious to me how a generd-purpose aspect language would,
indeed, be useful a the time, given the limited number of crosscutting concerns we had
previoudy identified. What examples would we use to justify and explain it?

In retrospect, it is clear my fears were inconsequentid. Aspect] is a lot more useful for a
larger number of software development needs than it would have been if we had
continued the path we initidly s&t, which was, by design, limited. DJ served AOP well,
but it was time to grow it. What follows is a brief anayds of what it took to make the
shift from concern-specific to generd- purpose.

In a paper we published in the summer of 1998 (Lopes and Kiczaes 1998) we used the
following picture to describe the range of languages we had been designing:

?

application- specific AML
I
domain-specific RG
I
concern-specific DJ
I
general-purpose aspect]
>
low-level high-leve

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

How did we move from concern-specific to generd purpose? What was preserved, what
was added and what was thrown away? Thisis my view about the trangtion process.

Significant differences:

The concept of having coordinators and portds as firg-order ements of the language
went away. Aspectd has “aspects” Agpects could, then, be coordinators and,
eventudly portals too. In fact, the subsequent releases of Aspect] had examples of
aspects acting as coordinators and even reusable coordinator library aspects, which,
because of the dimination of syntax, had a lot more lines of code than their DJ
counterparts. But the good thing was that aspects could play lots of other roles

without having to add more syntax. This was the design change that made Aspect]
generd- purpose.

Centrd to DJ and Demeter was the concept of programming crosscutting concerns
separately from the “primary” concerns, using specid kinds of modules that could not
be referenced back by the objects. The existence of aspect instances, and the
possihility of their being handled in programs, was a point of much discusson, and
during the first 2+ years of development we went back and forth on this issue (I cal it
“the metaobject syndrome’). The compromise was to use a sngleton aspect ingance
by default. This is ill the policy in the laiest verdon of Aspect], dthough it now
provides a richer set of aspect instance associations. Unlike DJ, Aspect] provides
handlers to aspect instances through the aspectOf () operation.

Significant clarifications:

The concept of join point, which had been identified in DJ, RG and other systems,
was cleaned up. DJ had only two kinds of join points the reception of messages by
objects (in COOL and RIDL) and the sending of messages to objects (in RIDL).
Gregor envisoned a much richer set of join points that are now pat of the Aspect]
join point modd. This extenson, by itsdf, didn't make Aspectd generd-purpose, but
it certainly expanded the kinds of crosscuts it could express. In paticular, this
clarification dlowed for the definition of control flow pointcuts, in later versons of
AspectJ.

Significant preservations:

Two basic principles were preserved: the presentation of Aspect] as an extension to
Java and the implementation of the weaver as a compile-time process. Up until
recently, the weaver was a pre-processor, transforming Aspect] programs into Java
programs. Now it operates on bytecodes.

Central to DJ and Demeter was the concept of referring to the join points using avery
ample direct naming scheme based on the names of the classes and the fidds Since
in DJ the “agpect” modules could refer to severa classes, it used qudified names such
as ClassName.FiddName, which could include wild cards. One design point was very
important: there was no notion of this naming process being a reflective operation.
To understand this, we have to look &t the dternatives. In other languages, eg. CLOS
(Steele 1990), once we have an object, we can get the names of classes and members
through a reflective API, and we can build meta-programs with that. DJ did not have
the base-meta digtinction and the APl that goes with it; it had a smple declarative

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

form for naming join points. That was preserved in Aspect]. The denotation of join
points suffered severad syntectic changes over the years, especidly as we darted to
extend the kinds of join points supported by Aspectd. But unlike meta-programming,
the naming is not programmatic but declarative: therefore, it feds very “naturd,” as
declarative programming usualy does.

The tempord referencing beforelafter associated with join points exised in DJ and
was preserved in Aspect]. (Note that before/after existed in other systems prior to DJ,
namey in CLOS and in Demeter)

The datic introduction of structure and behavior had been defined early on for COOL
(Lopes and Lieberherr 1994). CLOS (Stede 1990) aso supported a smilar feature,
but for run-time Introduction generated much discussion, as it didn't fit too wdl the
run-time semantics of join points, but it was preserved in Aspect). Over the years, it
suffered severd changes and dlarifications.

Past the trandtion from concern-gpecific to generd-purpose aspect language, which
happered in 1998, Aspect) evolved consderably. Part of that evolution was due to the
commitment to a solid advanced development plan. The support from DARPA, darting
in 1998, dlowed Gregor to get the resources he needed. In early 1999 the weaver was
rewritten in Java, which made the sysem much more portable than the previous Lisp
verson. At the end of that year, there were extensons to existing Integrated Development
Environments. The design of Aspect stabilized when it got to rdease 0.7, in the firg half
of 2000. That was aso the time | started pursuing other interests.

In form of conclusion to this section, t should be noted that lots of people were directly
involved in the AOP project a PARC, a different times, besdes Gregor Kiczaes and
mysf. In the early days of AOP, the group included John Lamping, Anurag Mendhekar,
Chris Maeda, JeanrMarc Loingtier and John Irwin. Venkatesh Choppella was there
during the trandtion from DJ to the generd-purpose Aspectd. Jm Hugunin and Mik
Kegen joined in the trandtion to advanced development. Others, incduding Erik
Hilsdde, joined after | left the project, and helped solidify the technology even further.
Over the years, more than a dozen summer students contributed to the project; | can't
remember dl their names, so | leave them nameless.

4 Building Communities

Communities rardly happen spontaneoudy. It tekes time and planning to creste and
expand them. The AOP group a PARC has put a dgnificant effort in building
communities around the technology. Lots of people outsde our group were instrumenta
in helping darify the concepts, by providing dternative technologies and dl sorts of
feedback. There werelare two kinds of communities. researchers and practitioners. The
bridge was done by very specid people early adopters, those people who work in
industry but have the curiogity and the will to try out beta systems.

4.1 Researchers

As mentioned earlier in the paper, in October of 1996 we held a workshop at PARC to
which we invited researchers we knew were working in amilar things. There were about
15 people in that meeting. The god of that workshop was to discuss the mgor

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

characterigtics of, and compare, the work we dl were doing. That included AOP (i.e. the
PARC people), Subject-Oriented Programming (Ossher and Tarr), Compogtion Flters
(Akst and Begmans), Reflection (Matsuoka et a.) and Adgptive Programming
(Liberherr). It was a fruitful workshop. One of the outcomes was the plan for a larger
workshop associated with ECOOP 97, with the title “Aspect-Oriented Programming.”
That workshop attracted over 40 people and was a big success. AOP fdlt like the new kid
on the OOP block. After that, there was an AOP workshop a ECOOP every year until
2000, and one AOP workshop at ICSE'98. At every workshop, | aways met new people
whose work would fit and enrich the separation of concerng AOP umbrella.

4.2 Practitioners

Building communities of usars especidly the “red” ones, is much harder than building
communities of researchers. By “red” usars | mean software engineers deveoping
products in companies. Researchers thrive on ideas, practitioners thrive on solid sysems
that solve therr problems without introducing new problems. Nobody in indusry will use
a system just because it embodies an interesting idea that will potentidly help them

Our first users were graduate students linked to the research community. They were the
only ones who were motivated enough to skip through al the bugd They weren't redly
usng the language to build anything; they were using it as a reference point. Our first
“red” users darted to show up in the beginning of 2000. At this point, the compiler was
solid enough to handle a few hundred classes. The fird users who contacted us had read
about AOP, had played a bit with the examples in Aspect and wanted to try it in parts of
their projects, with our support, for debugging aspects.

Ealy adopters are essentid but they are dso hard to ded with. They try something and
they dther like it — pushing it to the limit and asking for more — or drop it — slently. A
handful of early users were patient enough to point out defects and wesknesses, and
perssted in usng Agpectd until it got a lot more solid. The vast mgority were put off by
the beta-ness of the language. Given that | left the AOP project later that year, | can't say
much about what happened next. Accourting from the treffic in the maling lig, the
atides in industry magazines and the third-party IDE support, it looks like Agpect] has
been embraced by alarge community. Some of the AOP ideas are here to stay!

5 Looking Back

It is quite interesting to look back to the period 1994-1997 and to compare my vison of
AOP a the time with what AOP is now. My notion of Aspects’ was based on systems |
had worked on or sudied. So, back then, according to my “Separation of Concerns’
report, Aspects, independent of the techniques used to program them, were things like
gynchronization, remote parameter passing, configuration issues, rea-time condrants,
object sructure, falure handling, persstence, security, debugging, etc. When | went to
PARC, | found out about run-time performance Aspects such as memory optimization,
loop fuson and evdudion time. Recently, | did a quick survey a what users are using
Aspect] for, by looking a aticles in industry magazines (Spurlin 2002, Grosso 2002,

2| am using Aspect with a capital A to denote crosscutting concerns at the conceptual (design) level, not at
the implementation (AspectJ) level.

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

Lesecki 2002, Laddad 2002) and posting a quegtion in the users list. The following
categorization is an attempt a organizing my findings:

(1) debugging and indrumentation Aspects such as tracing, logging, testing, profiling,
monitoring and asserting. Mogt of the usages fdl into this category. But ®me usages are
very sophisticated. For example, one user reported having built a “virtud internd
information bus’ ingde their gpplication.

(2) program condruction Aspects such as mixins, multiple-inheritance (e.g. for bean
congtruction) and views,

(3) configuration Aspects such as managing the specifics of usng different platforms and
choosing appropriate name spaces for property management;

(4) enforcement and verification Aspects such as making sure the types of a framework
are used appropriately, components contract validation and ensuring best programming
practices,

(5) operating Aspects such as synchronization, caching, persstence, transaction
management, security and load baancing;

(6) failure handling Aspects such asredirecting afailed cdl to a different service;

The ability to use aspects as add-ons over classes, as well as to plug in and unplug
different aspects with a compilation switch, is being perceived as the mgor advantage of
AspectJAOP.

In retrospect, dthough we missed a few kinds of Aspects and mentioned a couple that
didn't yet emerge in practice, the andyss that Wdter and | made back in 1994, which
was voicing a trend that was in the ar, was a sdf-fuffilling prophecy! It is actudly quite
anazing tha later we, & PARC, were able to desgn a language that supports this
diversty of crosscutting concerns... with just a few key concepts. In other words: the path
| had started on — the design of concern specific languages — wouldn't scalel

Another interesting observation is that AspectJ does not support any of the run-time
performance Aspects that the group at PARC was focusng on before | joined. This
doesn't mean that those Aspects are irrdevant; it Smply means that Agpect] doesn't
provide the kinds of referencing mechanisms that are necessary to support them.

One last comment on whether the broad AOP thesis — i.e. that it leads to better programs
— has been vadidated or not. | don't have enough data to be able to draw any sdentific
concluson My recent poking a the Aspect] users gave me anecdota evidence, as some
users described their syslems and commented on their pogtive experiences. From where |
gand now, which is reaively far from where | used to be, | can see that AOP is
extremely popular. Maybe the academic thess doesn't matter!, as it never mattered for dl
other languages (Lisp, C++, Java, etc.), and as long as AOP helps solving some practica
software problems.

6 The Essence of AOP and Future Challenges

What is it about Aspects that makes them both dtractive to researchers and useful to
practitioners? And where can we go from here? | haven't worked in AOP for a couple of

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

years, but being as fascinated by languages as | was then, it's very interesting to try to
answer these questions.

Firg of dl, programming languages ae incredibly redrictive programming Systems.
They dl have one fundamentd weakness. They emphasize the fact that they are a means
to define computationd processes and they ignore the fact that they are a means for
humans to write down, and read, computational processes. Humans don't think using ay
of the exiding programming languages. Even if we do, we certainly haven't been writing
down gructured idess for thousands of years using those languages. We have been using
naturd languages. That has worked out quite wel. Naturd languages are as generd-
purpose as languages can get. They contan an extremey rich and diverse st of
condructs that adlow us to write down and enormous amount of ideas concisdy and in
modular ways that can be easly understood by others.

Computer systems, of course, are different. | am not suggesing that programming
languages should have a naturd language interface. That has been suggested a long time
ago (eg. Sammet 1966, Bdlard and Biemann 1979) and it has been done before (eg.
Hypertadk (Winkler et a. 1994) and NaturalJava Price et a. 2000)); the result is dways
limited or dubious. However, | am suggeding that programming language desgners
should pay more atention to the way naturd languages work and the way we structure
ideas with them. This is related to what | think is the mgor contribution of AOP to the
next generation of programming systems.

Take tracing, for example. When we think of tracing we formulate something like this
“for dl methods, cdl Tracein before they dtart executing and Traceout after they finish
executing.” However, al programming languages will force us to transform this sentence
into something like this “In method A, cdl Tracein; ... cdl Trace.out; return. In method
B, etc.” So what is it about the firg representation of the intention that's better than the
second, and how does the natural language help? In this case it's the references to “dl
methods’, “before ... executing” and “after ... executing”. That’s the power of AspectJ:
it supportsa richer set of structural and temporal referencing that follows what we have
in natural languages. Agpect] does it in a way that seems to be vey ussful for
practitioners. it alows the encgpsulaion of these forms in modules that can be added to
or removed from the gpplications with a compilation switch. In other words, writing a
tracing aspect is like writing a different chapter, or section, in abook.

So, what makes an Agpect be an Aspect, before we even think of programming it with
Agpect]? Given the name we chose for it, which clearly influences our perception,
Aspects are software concerns that affect what happens in the Objects but that are more
concise, intdligible and managedble when written as separate chapters of the imaginary
book that describes the application. This pseudo-definition of Aspect digns wel with
what users have been usng Aspect for. The dructurd and tempord referencing in
Agpect) are essentid mechanisms for achieving the separation between the Objects and
those other concerns. Those mechanisms are aso natural: we would use those kinds of
referentid reations if we were to write it in English or Portuguese. But the need for
better referencing mechanisms doesn't end with what the word “ Aspect” conveys.

On the way to future chdlenges, I'll do a brief incurdon into Linguidics. Linguidics has
been dudying a large super-set of the condructs that Aspect] supports. referentidity

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

between utterances — the subject matter of binding theory draws its roots from Chomsky's
pioneering work. In Naturd Languages, pronouns (eg. this, that, it, her, which, etc) are
exanples of such referentid rdations, but they ae not the only ones. In generd
linguidtics, referential dependence is studied regardless of morphological form, regardless
of whether it is context-dependent or context-free and regardiess of whether it is about
objects or about time. For example, references can be ligs of nouns such as “The
presdent, the cat, the resdent and the hat”; congraints on nouns such as “colorless
liquids’; tempord references such as “dfter reading the input stream”; and combinations
of the above. Note that these are forms we use intuitively, that make texts very concise
and that dlow us to organize our idess as optimaly as we can This very rich st of
references is wha dlows us, for example, to divide specification manuds into chapters
and sections that are rdlated but loosdly coupled; it is dso what dlows us to make a
statement and add more to it a a later point. If we didn't have these referentid forms we
would, indeed, have a hard time communicating.

Programming languages support a very smdl st of referentid reations. In particular,
reflective references, groups and tempord references are, practicdly, inexistent. They can
be smulated by combinaions of computation and new nouns. And that’s exactly one of
the things that make programs much more complex than they should be programmers
have to express a rich sat of referencing forms udng a very smdl st of referencing
forms. In the process, intentions get diluted and tangled.

The future of AOP will probably benefit from removing the word “Aspect” out of its
name! What's important for the next generaion of programming languages is the
exploration of the rich set of referentid reaions we find in naturd languages. That will
dlows us to gppropriately implement pieces of program specification not only as separate
chapters, but dso as sections, paragraphs and even sentences, in a way that's much more
natural; it will help avoid redundancy, temporary varigbles and dl sorts of programming
oddities. This is, of course, a chdlenge for language desgners and | have only some
fuzzy ideas about how those languages should look like It seems to me that the
conceptual framework that's avalable from Linguigtics is an excelent framework for
programming languages too.

Acknowledgements

Thanks to John Lamping for reading an earlier draft of this pgper and pointing out some
memory lgpses and inconsgencies. Thanks dso to Mik Kersten for proofreading the
paper.

References

Aksit M., Bergmans L., and Vura S. 1992. An Object-Oriented Language-Database Integration

Mode: The Compostion-Filters Approach. In O. Lehrman Madsen, editor, European Conference
on Object-Oriented Programming (ECOOP), pages 372:396, Utrecht, The Netherlands, June/July
1992. Springer Verlag, Lecture Notes in Computer Science. Vol. 615.

Aksit M., Bosch J., van der Sterren W., and Bergmans L. 1994 Real-Time Specification
Inheritance Anomalies and Rea-Time Filters. In Mario Tokoro and Remo Pareschi, editors,

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

European Conference onObject-Oriented Programming (ECOOP), pages 386:407, Bologna, Italy,
July 1994. Springer Verlag, Lecture Notes in Computer Science. Vol. 821.

Aksit M., Wakita K., Bosch J., Bergmans L., and Yonezawa A. 1994. Abstracting Object
Interactions using Composition-Filters. In M. Guerraoui, O. Nierdtrasz, and M. Rivelll, editors,
Object-Based Distributed Processing. Springer Verlag, Lecture Notes in Computer Science, 1994.

Ballard, B. and Biemann, A. 1979. Programming in Natural Language: NL C as a Prototype. Proc.
ACM/CSC-ER Annua Conference, 228-237.

Bergmans L. 1994. Composing Concurrent Objects. PhD thesis, University of Twente, Enschede,
The Netherlands, July 1994.

Barbacci M. and Wing J. 1986. Specifying Functional and Timing Behavior for Rea-Time
Applications. Technical Report CMU/SEI-86-TR-4 ADA 178769, Software Engineering Institute
(Carnegie Mdlon University), 1986.

Fralund S. and Agha G. 1993. A Language Framework for Multi-Object Coordination. In Oscar
M. Nierstrasz, editor, European Conference onObject-Oriented Programming (ECOOP), pages
346-360, Kaiserdautern, Germany, July 1993. Springer Verlag, Lecture Notes in Computer
Science. Vol. 707.

Gamma E., Hdm R., Johnson R., and Vlissdes J. 1994. Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing Series. Addison-Wedey, Reading, MA,
October 1994. ISBN 0-201-63361-2.

Grosso W. 2002. Aspect-Oriented Programming and AspectJ. In Dr. Dobbs Journal. August
2002. http://ww.ddj.com/articles’2002/0208/

Harrison W. and Ossher H. 1993. Subject-oriented programming (a critique of pure objects). In
proc. Object-Oriented Programming Systems Languages and Applications (OOPSLA), pp.411-
428. 1993.

Honda Y. and Tokoro M. 1992. Soft Real-Time Programming through Reflection. In
International Workshop on Reflection and Meta-Level Architecture, pages 12:23, Tama-City,
Tokyo, Japan, November 1992.

Hirsch W. and Lopes C.V. 1995. Separation of Concerns. Northeastern University, College of
Computer Science Technical Report NU-CCS-95-03. February 1995.
ftp://ftp.ccs.neu.edu/pub/peopl e/ cristalpublications/techrepds/index.html

Irwin, J, Loingtier, J-M., Gilbert, JR., Kiczdes, G., Lamping, J., Mendhekar, A. and
Shpeisman, T. 1997. Aspect-oriented programming of sparse matrix code. Scientific Computing
in Object-Oriented Parallel Environments. First Internationa Conference, ISCOPE 97.
Proceedings. Springer-Verlag, 1997. p.249-56.

Jacobson |. 1986. Language Support for Changeable Large Real Time Systems. In Proc.
Conference on Object-Oriented Programming Systems, Tools and Applications (OOPSLA’ 86).
ACM Press. pp. 377-384.

Kiczades G., des Rivieres J., and Bobrow D.G. 1991. The Art of the Metaobject Protocol. The
MIT Press, Cambridge, Massachusetts, 1991. ISBN 0-262-11158-6 (hc.).

Kiczales G. and Andreas Pagpcke. 1995. Open Implementations and Metaobject Protocols.
Tutorial dides and notes.
http://www?2.parc.com/cdl/groups/sdalpublications/papersKiczaes- TUT95/for -web. pdf

Kiczaes, G. 1996. Beyond the black box: open implementation. |EEE Software, vol.13, (no.1),
|EEE, Jan. 1996.

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

Kiczdes G., Lamping J., Lopes C., Maeda C., Mendhekar A. and Murphy G. 1997. Open
Implementation Design Guidelines. In Proc. 19" International Conference on Software
Engineering (ICSE). ACM Press. 1997.

Kiczaes G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J-M. and Irwin J.
Aspect-Oriented Programming. 1997. In Proc. 11" European Conference on Object-Oriented
Programming (ECOOP). Springer-Verlag LNCS 1241. June 1997.

Laddad R. 2002. | want my AOP! In Java World magazine. January, March and April 2002.

Lesiecki N. 2002. Test flexibility with Aspectd and mock objects. In Java Technology Zone for
IBM’s Developer Works. May 2002.

Lieberherr K.J., Siva-Lepe |., and Xiao C. 1994. Adaptive object-oriented programming using
graph-based customization. Communications of the ACM, 37(5):94:101, May 1994.

Lieberherr K.J., Orleans D. and Ovlinger J. 2001. Aspect-Oriented Programming with Adaptive
Methods. In Communications of the ACM 44(10). October 2001.

Liskov B. and Scheifler R. 1983. Guardians and Actions: Linguistic Support for Robust,
Distributed Programs. ACM Transactions on Programming Languages and Systems,
5(3):381:404, July 1983.

Lopes C.V. and Lieberherr K.J. 1994. Abstracting Process-to-Process Relations in concurrent
Object-Oriented Applications. In Mario Tokoro and Remo Pareschi, editors, European
Conference onObject-Oriented Programming (ECOOP), pages 81:99, Bologna, Italy, July 1994.
Springer Verlag, Lecture Notes in Computer Science. Vol. 821.

Lopes C.V. and Lieberherr K.J. 1996. AP/S++: Case-study of a MOP for purposes of software
evolution. Cristina Lopes and Karl Lieberherr. In Proc. Reflection'96, San Francisco, California.
1996.

Lopes C. 1996. Adaptive Parameter Passing. In Proc. International Symposium on Object
Technologies for Advanced Software (ISOTAS 96). Springer-Verlag LNCS n.1049. Japan, 1996.

Lopes C. 1998. D: A Language Framework for Distributed Programming. PhD Thesis, College of
Computer Science, Northeastern University.

Lopes C. and Kiczales G. 1998. Recent Developments in AspectJ. In Proc. Aspect-Oriented
Programming Workshop at ECOOP 98. Workshop Reader, Springer-Verlag LNCS 1543. July
1998.

Maes P. 1987. Concepts and Experiments in Computational Re ection. In Norman Meyrowitz,
editor, Object-Oriented Programming Systems, Languages and Applications Conference
(OOPSLA), pages 147{ 155, Orlando, Florida, October 1987. ACM Press. Specia |Issue of
SIGPLAN Notices, Vol.22, No.12.

Magee J., Kramer J., and Soman M. 1989. Constructing Distributed Systemsin CONIC. IEEE
Transactions on Software Engineering, 15(6):663:675, June 1989.

Mahoney J.V. 1995. Functional Visua Routines. Xerox Palo Alto Research Center Technical
Report SPL95-069, July 1995.

Matsuoka S. and Y onezawa A. 1993. Anadysis of inheritance anomaly in object-oriented
concurrent programming languages. In Gul Agha, Peter Wegner, and Akinori Y onezawa, editors,
Research Directions in Concurrent Object-Oriented Programming, chapter 1, pages 107:150. The
MIT Press, Cambridge, Massachusetts, 1993.

Copyright © 2002 by the author. All rights reserved.

UCI-ISR-02-5

Mendhekar A., Kiczales G. and Lamping J. 1997. RG: A Case-Study for Aspect-Oriented
Programming. Xerox Palo Alto Research Center Technical Report SPL97-009 P9710044.
February 1997.

Okamura H. and Ishikawa Y. 1994. Object Location Control Using Meta-level Programming. In
Mario Tokoro and Remo Pareschi, editors, European Conference on Object-Oriented
Programming (ECOOP), pages 299:319, Bologna, Italy, July 1994. Springer Verlag, Lecture
Notes in Computer Science. Vol. 821.

Orleans D. and Lieberherr K.J. 2001. DJ Dynamic Adaptive Programming in Java. In Proc.
Reflection 2001. Springer-Verlag.

Price D., Riloff E., Zachary J. and Harvey B. 2000. NaturalJava: A Natural Language Interface
for Programming in Java. Proc. ACM Intelligent User Interfaces Conference.

Reghizzi C. S. and de Paratesi G.G. 1991. Definition of Reusable Concurrent Software
Components. In Pierre America, editor, European Conference on Object-Oriented Programming
(ECOOP), pages 148:166, Geneva, Switzerland, July 1991. Springer Verlag, Lecture Notesin
Computer Science. Vol. 512.

Sammet, J. 1966. The Use of English as a Programming Language. Comm. ACM, 9(3), 228-230.

Siva-Lepe |., Hursch W., and Sullivan G. 1994. A Report on Demeter/C++. C++ Report,
6(2):24:30, February 1994.

Smith B.C. 1984. Reflection and Semanticsin Lisp. In ACM Sympaosium on Principles of
Programming Languages, pages 23:35, Salt Lake City, UT, January 1984. ACM Press.

Sousa P., SequeiraM., Ferreira P., Zuquete A., Lopes C., Pereira J., Guedes P. and Alves
Marques J. 1993. Distribution and Persistence in the IK Platform: Overview and Evauation. In
Usenix Computing Systems Journd 6(4), Fall 1993.

Spurlin V. 2002. Aspect-Oriented Programming with Sun ONE Studio. In Sun ONE Studio
Developer Resource page. October 2002. http://forte.sun.com/ffj/articles/aspectd.html

Steele G. 1990. Common Lisp: The Language. Second Edition. Digitd Press.

Takashio K. and Tokoro M. 1992. DROL: An Object-Oriented Programming Language for
Distributed Real- Time Systems. In Andreas Pagpcke, editor, Object-Oriented Programming
Systems, Languages and Applications Conference (OOPSLA), pages 276:294, Vancouver,
Canada, October 1992. ACM Press.

Walker R.J., Baniassad E.L.A., Murphy G.C. Aninitial assessment of aspect-oriented
programming. 1999. Proceedings of the 21% International Conference on Software Engineering
(ICSE'99), Los Angeles, CA, USA, 16-22 May 1999. ACM, 1999. p.120-30.

Watanabe T. and Y onezawa A. 1990. Reflection in an Object-Oriented Concurrent Language. In
Akinori Y onezawa, editor, ABCL: An Object-Oriented Concurrent System, chapter 3, pages 45
70. The MIT Press, Cambridge, Massachusetts, 1990. ISBN 0-262-24029-7.

Winkler D., Kamins S. and DeVoto J. 1994. Hypertalk 2.2: The Book. Random House.

Zeidler C. and Gerteis W. 1992. Digtribution: Another Milestone of Application Management
Issues. In G. Heeg, B. Magnusson, and B. Meyer, editors, Technology of Object-Oriented
Languages and Systems (TOOL S Europe), pages 87-99, Dortmund, Germany, March 1992.

Copyright © 2002 by the author. All rights reserved.

