Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425
www.isr.uci.edu

Institute for Software Research

University of California, Irvine

Proceedings of the 2002
Workshop on the State of the Art in
Automated Software Engineering

% | David F. Redmiles, Editor
“¥ | University of California, Irvine
redmiles@ics.uci.edu

July 2002

ISR Technical Report # UCI-ISR-02-1

www.isr.uci.edu/tech-reports.html

Proceedings of the 2002
Workshop on the State of the Art in Automated Software Engineering

David F. Redmiles, Editor
Institute for Software Research
University of California, Irvine

redmiles@jics.uci.edu

ISR Technical Report # UCI-ISR-02-1

July 2002

Abstract: The 2002 Workshop on the State of the Art in Automated Software Engineering
brought together leading researchers in the field to present their most recent or best work exempli-
fying automation in software engineering. The workshop focused on identifying emerging trends
and challenges, such as: evolving requirements; software adaptability; validation of requirements
and systems; complexity of software engineering tasks and artifacts; diversity of models and nota-
tions; and the need for efficient tool support and tool infrastructure. Position papers which were
presented at the workshop comprise the Proceedings. A summary of the workshop was included
in the Proceedings of thel7th IEEE International Conference on Automated Software Engineering
(ASE 2002) and is available at the workshop web site:

http://www.isr.uci.edu/events/ASE-Workshop-2002/

This Proceedings may also be referenced as Technical Report UCI-ICS-02-17.

Recent Experiences with Code Generation and Task Automation Agents in Software
Tools

John Grundy'*? and John Hosking’

Department of Electrical and Electronic Engineering' and Department Computer Science”
University of Auckland, Private Bag 92019, Auckland, New Zealand
{john-g, john} @cs.auckland.ac.nz

1. Introduction

As software grows in complexity, software processes
become more flexible yet complex, and more developers
must co-operate and co-ordinate their work, software tools
providing developers editing, reviewing and management
facilities are not in themselves sufficient to ensure optimal
project productivity. The number of tasks developers must
manually perform with their tools, no matter how effective
and efficient the tools are, continues to increase. Eventually
this either overwhelms developers or leads to them not
performing (often critical) tasks e.g. they avoid or reduce
appropriate project management metrics capture, detailed
design analysis and rigorous software testing.

The solution is provision of various forms of automation
in the software tools developers use - the tools carry out
perhaps a wide range of activities for the developer at
appropriate times and inform the developer of results of
actions in appropriate ways [2, 4, 5]. Many automation
facilities have been used in tools, and in recent years more
and more have tended to be added. Examples of automated
tool support include information analysis (i.e. checking of
software artefacts for consistency); autonomous agents (that
perform tasks for users, including notification, information
update and change propagation, and task co-ordination);
code generation (generating wuser interface, data
management and/or information process code from
specifications); and

We have focused in recent years on two areas of
automation in software tools: (1) generating code from
high-level software specifications; and (2) utilisation of
high-level software information by agents to support
collaborative work, change management and component
testing. From our experiences developing a number of
software tools using these automation approaches, we have
learned a number of lessons for further research in these
areas. These include:

e the need to support software tool meta-model extension
e the need for on-the-fly enhancement of tool notations,
event processing and code generation facilities

e support for software artefact change propagation and
annotation

e the need to have reflective, high-level information to
running software system components

e the continuing challenges of enhancing COTS tools
with these kinds of automation facilities, including the
need for sharable, extensible software information
models for software tools and open tool infrastructure

In the following two sections we briefly review some of
our recent automated software tools. We give three
examples of tools generating code from high level software
descriptions, including a performance test-bed generator, a
data mapping tool and an adaptive user interface generation
tool. We describe three tools utilising event-driven software
agents, including collaborative work components,
requirements management and component testing tools. We
then review the key lessons we have learned from this work
and summarise future directions for our research on
automated software tools.

2. Code Generation Examples

The three tools described in this section all generate
large amounts of complex code from high-level descriptions
of different aspects of software. Their ability to do so is
dependent on the software information model they generate
code from and the developer’s ability to construct instances
of this model via appropriate user interfaces and design
metaphors.

2.1. SoftArch/MTE

Determining if software architecture designs will meet
required performance benchmarks is very challenging [3,
14]. SoftArch/MTE is a distributed system performance
test-bed generator [6]. It takes high-level descriptions of
software architectures and generates client and server code
that is automatically deployed and run to inform developers
of likely architecture performance. As real code is generated
and is deployed and run on real machines, quite accurate

performance measures can be obtained very quickly by
developers. Figure 1 outlines how Softarch/MTE works. A
tool (SoftArch) is used to model software architectures at a
high level of abstraction. This generates an XML-encoding
of the architecture design including clients, servers, client
requests, server operations, database operations and tables,
and middleware and host characteristics. XSLT
transformation scripts convert the XML into code and
deployment scripts, which are uploaded and run on
distributed client and server machines by deployment
agents. Performance results are sent back to SoftArch/MTE
and visualised with MS Excel™.

<architecture>
<client>
<name>Customer</name>
</client>
£ <server>

2. Generate XML-encoded
architecture design

1. High-level

architecture designs ¥

Client1.Request1: 157 22 D
Client1.Request2: 99 187

3. Run XSLT
6. Run tests & .

transformation
send results to .

scripts

SoftArch/MTE

for visualisation /

\ Public class client! {

Public void static main() {
Server.Request1();

5. Compile & upload to
multiple host machines

4. Generate code, IDLs,
deployment info, etc

Figure 1. SoftArch/MTE performance test-bed.

2.2. Form-based Data Mapping Specification

Implementing mappings between complex data
structures is needed for various domains, including
business-to-business e-commerce, but is time-consuming
and hard to maintain with convention languages and tools
[7]. We have developed a form-based data mapping tool
that provides an environment in which non-programmer
end-users (business analysts) specify correspondences
between complex data models [12]. These data models are
rendered as “business forms”, and analysts specify form
element correspondences using a drag-and-drop, form-
copying metaphor. A transformation implementation is then
generated from this high-level correspondence specification
that when run transforms data in the source form format into

target form data. Figure 2 illustrates this form-based
mapping specification approach. Meta-data is imported
from schema files or design tools. Business form
representations are generated, and then analysts specify
correspondences between form elements, effectively
programming-by-demonstration ~of mappings. XSLT
transformation scripts are generated by the mapping tool
that implement the data transformations specified.

1. Analyst imports meta-
data from source and target

enterprise systems
Meta-data e.g. I@
XML DTDx .
s 2. Default business
form layouts
generated. Analyst can
rearrange layout to

better-reflect actual
business forms.

4. Data transformation
implementation
generated from

specification

B 3. Analyst specifies 1:1, 1:n, m:1
group and field correspondences | —

i.e. specifies how to “copy” data I—
—

Il

<xsl..>
<xsl:apply-templates....>

st > from one form to the other
= D

|'_-‘\‘ I ——
]

Figure 2. Form-based data mapper.
2.3. Adaptive User Interface Technology

Many systems require thin-client interfaces that will run
on multiple display devices and will suit different kinds of
users and user tasks [13]. For example a customer accessing
an on-line store via a wireless PDA will have quite a
different interface for the same functions as a staff member
accessing the system from a desktop PC web browser.
Building such interfaces with conventional techniques
results in large numbers of very similar server-side web
page implementations. We have developed a GUI design
tool and adaptive interface mark-up generator to make
design and implementation of such adaptive interfaces
casier [8]. Figure 3 illustrates this Adaptive User Interface
Technology (AUIT) system. A designer uses an abstract
representation of an interface to specify generic screen
components, layout and interaction. This tool generates Java
Server Pages with a set of custom tags describing the
adaptable interface. When deployed in a web server and
accessed by a user, the tags generate a user interface tailord
to the accessing user’s display device, user characteristics
and current task.

1. Designer specifies 2. Generate AUIT
abstract screen JSPs

auit:form>
<auit:label>Hello</auit:label>
<auit:paragraph/>
<auit:label>Name: </auit:label>

<auit:editfield id=customer
field=name />
<auit:table>

</auit:form>

3. Deploy JSPs in web
server

4. Display devices access
and adapted Uls generated

Figure 3. Adaptive User Interface Technology.

3. Task Automation Examples

The following examples are of software tools we have
developed that incorporate software agents to assist
developers by automating various tasks. The agents are
driven by event subscription or user request. The agents
access and manipulate software artefact information for the
user in various ways.

3.1. Collaborative Work Agents

Most software engineering tools require some degree of
collaborative work support, though most hard-code this and
are thus inflexible and require extensive engineering to
build [1, 5]. We have developed a set of plug-in software
agents that interact with tool client and server components
to add collaborative work support to tools [9]. Figure 4
illustrates the basic structure of our approach. Collaboration
agents support collaborative editing, group awareness and
version control. Communication agents support messaging,
annotation and dialogue between developers. Co-ordination
agents provide change notification actioning, locking, to-do
list task scheduling and even workflow co-ordination. The
agents can be plugged into or removed from tools at run-
time. In order to add these agents to tools, they need to
determine various user interface, distribution and
persistency support of the tool components. This is done by
having the tool components publicise “aspects” which
describe this information and can be introspected by our
collaboration agents.

Ay A
. UI Components (Buttons, Menus, Windows...)

fom N
)

T ﬁ

Groupware Clients

Client
Comps

Collaboration Clients Co-m"dination Communication
(:j (Cursors, Editing, <:> (Locl.(mg, to-do <:> (Chat, Email, text
Versioning, ...) list, ... messages, notes, ...)

[Groupware Infrastructure (senders/receivers)

i

Groupware Infrastructure (senders/receivers) <,:>

L =

Groupware Servers OHer GW
Event Message History Clients:

Server Server Server

————

Persistency Components

Figure 4. Collaborative work components.
3.2. Requirements Management Agents

Based on an empirical study of software engineering
practitioners use of abstract information models [17], we
have built a prototype tool for managing relationships
between functional and non-functional requirements, use
case models, and black-box test plans.

Source documents
(word, powerpoint,
test plans etc)

Summarised & linked

information models
Extraction —
agents

N
e

Elements
changed

Multi-representational views Change propagation

Figure 5. Requirements management.

This environment contains software agents that extract
information about these three different abstract software
representations, summarising the key parts of each
information model. Other agents create implicit links
between elements in different representational models or
allow developers to create explicit links and modify artefact
information. When elements in one representation change,
descriptions of these changes are captured and sent to other
models. Developers can view the impacts of these changes,

trace sources of changes, and view information from
different representations in multi-representational views.
We hope to provide other agents that can update source, 3™
party software artefact documents in the future. Figure 5
outlines the main facilities of this prototype tool.

3.3. Aspect-oriented Component Validation Agents

Validating that deployed software components meet
their required functional and non-functional constraints is
very difficult [11, 15]. We have developed software agents
that inspect the constraints on deployed software
components and perform validation tests on these
components. The components are designed with the aspect-
oriented component engineering method [10]. Their
implementations have information characterising system
aspects, such as persistency, distribution, security and
transaction processing characteristics, associated with them
as XML documents. Our validation agents inspect these
component aspects and formulate tests to ensure the
component’s aspect-encoded constraints (functional and
non-functional) are met in their current deployment
situation. Some agents deploy 3™ party testing tools, like
SoftArch/MTE, to carry out complex tests and analyse the
results produced.

Web Servers/J2EE Servers

Deployment
Descriptors

Deployed

@ Components

—>

-

Proxies;
Example

Deployment .
%03;111; Aspect Test Data
(8) i Information | suppliers
/ eccmcmmmgmmm '
)
~ 7 @\ © /69
Developer !

Validation Agents

’ EJB Testers

JSP Testers

3" Party
Testing Tools

LA
i Configuration |
i Scripts etc

Figure 6. Agent-based component testing.
4. Key Issues and Future Research

We have identified several key issues when building the
tools described in the previous two sections. These are
summarised below, along with some of the research
directions we are investigating to make the development of
such automated software tools easier and more feasible.

4.1. Software Information Model Extension

Many of our tools require extensible meta-models in
order that their capabilities can be enhanced by developers
as required. For example, we have added new kinds of
architectural characteristic support to SoftArch/MTE as we
have extended the tool to support a wider range of target
test bed generation (e.g. message-based systems and web-
based interfaces). Similarly, the information models the
requirements management agents use needs to be extensible
as different users have different degrees of detail in each
model they are interested in capturing.

Our experience with these tools has indicated that
ideally many automated software tools will have software
information models that can be extended as required.
Versioning these information models and ensuring
compatibility between old and new models often may need
to be supported. We are developing a new software meta-
tool with a fully extensible meta-model.

4.2. Tool Notation and Behavioural Extension

Many of our tools need to allow developers to add
additional notational representations (in order to make use
of meta-model extensions or support new kinds of artefact
views), and similar require behaviour extensions (such as
new code generation extensions or constraints on models
built). Examples include extending the modelling notations
of SoftArch/MTE, AUIT and our requirements modeller,
and adding new target code generation for SoftArch/MTE,
our form-based mapper, AUIT and component validation
agents.

Most of our tools have very limited notational support,
and limited run-time behavioural modification. This results
in frustrating turn-around time when enhancing tools and
requires developers to have in-depth knowledge of tool
internal structures to make any enhancements. Our new
meta-tool architecture supports flexible view notation
definition as well as a wide range of run-time behaviour
enhancement by allowing developers to incorporate new
code into the tools at run-time. This code includes constraint
checking, event/action rules and XSLT transformation
scripts which we have found very useful for implementing
code generation.

4.3. Change Propagation and Artefact Annotation

Many of our tools need to track changes made to
software artefacts. These include our requirements
modeller, collaborative work supporting agents and
component validation agents. SoftArch/MTE and our
requirements modeller require support for specifying links
between model elements and for annotating elements with

additional, semi-structured information such as design
rationale and change explanation.

While many software tools have moved to adopting
publish-subscribe event-based architectures the use of these
architectural facilities is still relatively limited. We have
found using this architecture important in driving many task
automation agents, particularly those supporting
collaborative work. The ability to link, refine and annotate
software artefacts in many of our tools is important and
hence should be supported within a tool infrastructure.

4.4. Reflection Information

Some software tool automation facilities need access to
detailed information about running tool components.
Examples include the plug-in collaborative work agents, the
data mapping tool and the aspect-based component
validation agents. The collaborative work agents need to
adapt tool component interfaces to integrate new facilities
and make use of publicised component event mechanisms.
The data mapper needs to obtain meta-data information
from source and target structures. The validation agents
need to determine what the requirements on deployed
components are in order to perform appropriate tests to
validate these are met.

In our recent work we have developed a mechanism to
annotate software components with information about the
“aspects” of a system they provide or require services [10,
9]. This is used by our collaborative work and validation
agents. Interestingly, tool automation is required in order to
generate this information from annotated component design
models. We are investigating adding these aspects as
annotations to SoftArch/MTE architecture designs to better-
organise the many properties of some of its architecture
abstractions.

4.5. Tool Integration

Software tool integration has been a long-standing
problem for tool developers and those developing
automated support for tools [16, 18]. Some of our tools
utilise 3" party systems in limited ways e.g. SoftArch/MTE
uses MS Excel™ to visualise performance data and our
requirements modeller extracts summarised data from save
files. Many of the automation support described in our tools
above could however be very useful if integrated into 3™
party, commercial software development tools. For
example, SoftArch/MTE test beds could be generated from
(greatly) annotated Rational Rose™ deployment diagrams;
mapper transformations from cross-linked MS Access™
screen designs; collaborative work agents potentially added
to a very large range of tools; and inter-representation
requirements change management added to integrate several
different tools.

Three key problems preventing such enhancements of
existing tools we have identified are lack of agreed, high-
level tool information models that can be shared between
tools, lack of adequate tool event and operation APIs, and
sufficiently open technologies implementing these APIs and
run-time inspection facilities allowing other tools to
discover them. We are investigating “componentising”
some of the tool automation facilities outlined in the
previous section in order to add them to COTS software
tools and to allow easier use of these tools by our own.

5. Summary

We have been developed a range of software tools with
automation features, in particular ones that generate code
from various high-level software information models and
ones that leverage ‘“agents” to perform various task
automation facilities for developers. Some of the key issues
in building such tools we have encountered include the need
to support extensible information models, notations and
event handling behaviour, change propagation and
information element annotation capabilities, detailed
reflective information encoded with software components,
and tool integration. We are developing a meta-tool with
these capabilities to enable us to better support the
construction of wvarious automated software tools, and
developing various integration components to support the
integration of our new tools and enhancement of existing
COTS software tools with automation.

References

1. Bandinelli, S., DiNitto, E., and Fuggetta, A. Supporting
cooperation in the SPADE-1 environment. /[EEE Transactions
on Software Engineering, vol. 22, no. 3, December 1996,
841-865

2. Fischer, G, Domain-oriented design environments, In
Proceedings of the Seventh Knowledge-Based Software
Engineering Conference, McLean, Virginia, 1992, pp. 204-
213.

3. Gorton, I. And Liu, A. Evaluating Enterprise Java Bean
Technology, In Proceedings of Software - Methods and
Tools, Wollongong, Australia, Nov 6-9 2000, IEEE CS Press.

4. Green, C., Luckham, D., Balzer, R., Cheatham, T., Rich, C.
Report on a Knowledge-Based Software Assistant, Technical
Report RADC-TR-83-195, Rome Air Development Center,
August 1983, Reprinted in: C.H. Rich, R. Waters (eds.):
Readings in Artificial Intelligence and Software Engineering,
Morgan Kaufmann Publishers, Los Altos, CA, 1986, pp. 377-
428,.

5. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and Apperley,
M.D. An architecture for decentralised process modelling and
enactment, [EEE Internet Computing, vol. 2, no. 5,
September/October 1998, IEEE CS Press.

6. Grundy, J.C., Cai, Y. and Liu, A. Generation of Distributed
System Test-beds from High-level Software Architecture
Descriptions, In Proceedings of the 2001 IEEE Automated

10.

11.

Software Engineering Conference, San Diego, 26-29 Nov
2001, IEEE CS Press, pp. 193-2000.

Grundy, J.C., Mugridge, W.B., Hosking, J.G. and Kendall, P.
Generating EDI Message Translations from Visual
Specifications, In Proceedings of the 2001 IEEE Automated
Software Engineering Conference, San Diego, CA, 26-28
Nov 2001, IEEE CS Press.

Grundy, J.C. and Zou, W. An architecture for building multi-
device thin-client web user interfaces, In Proceedings of the
14" Conference on Advanced Information Systems
Engineering, Toronto, Canada, May 29-31 2002, Lecture
Notes in Computer Science.

Grundy, J.C. and Hosking, J.G. Engineering plug-in software
components to support collaborative work, to appear in
Software — Practice and Experience.

Grundy, J.C. Multi-perspective specification, design and
implementation of software components using aspects,
International Journal of Software Engineering and
Knowledge Engineering, Vol. 10, No. 6, December 2000, pp.
713-734.

Haddox, J.M., Kapfhammer, G.M. An approach for
understanding and testing third party software components, In
Proceedings of 2002 Annual Reliability and Maintainability
Symposium, Seattle, WA, 28-31 Jan. 2002, IEEE CS Press.

12.

13.

14.

15.

16.

17.

18.

Li, Y., Grundy, J.C., Amor, R. and Hosking, J.G. A data
mapping specification environment using a concrete business
form-based metaphor, In Proceedings of the 2002
International Conference on Human-Centric Computing,
IEEE CS Press.

Marsic, 1. Adaptive Collaboration for Wired and Wireless
Platforms, IEEE Internet Computing (July/August 2001), 26-
35

McCann, J.A., Manning, K.J. Tool to evaluate performance in
distributed heterogeneous processing. In Proceedings of the
Sixth Euromicro Workshop on Parallel and Distributed
Processing, IEEE, 1998, pp.180-185.

McGregor, J.D. Parallel Architecture for Component Testing.
Journal of Object-Oriented Programming, vol. 10, no. 2 (May
1997), SIGS Publications, pp.10-14..

Meyers, S. Difficulties in Integrating Multiview Editing
Environments, IEEE Software, 8 (1), 1991, pp. 49-57.
Olsson, T., Runeson, P., Software document use: A
qualitative survey, Technical report, Dept. of Communication
systems, Lund University.

Reiss SP. The Desert environment. ACM Transactions on
Software Engineering & Methodology, 8 (4), Oct. 1999,
pp.297-342.

Open Modeling in Multi-stak eholder Distrib uted Systems:
Model-basedRequirementsEngineering for the 21stCentury!2

RobertJ. Hall
AT&T LabsResearch
180Park Ave,Bldg 103
FlorhamPark,NJ 07932
bob- 3OpenMbdel - @hannel s. research. att. com

Abstract

Multi-stakeholderdistributedsystemgMSDSs)wherein
the constituentnodesare designedor operated by distinct
staleholdes having limited knowled@ and possiblycon-
flicting goals, challenge our traditional conceptionof re-
guirementengineering MSDSssud asthe Internetemail
system,networksof web services,and the Internet as a
whole haveglobally inconsistenthigh-level requirements
and, therefore, havebehaviorwhich is impossibleto vali-
date accoding to the usual meaningof the term. We can
sidestephisissueby changingthe problemfrom"does the
systerrdo theright thing” to "will the systendo the right
thing for me(now)?” Butto solvethat simplerproblem,we
needa wayto predictbehaviorof the systenoninputsofin-
terestto us. OPENMODEL proposedo solvethis by estab-
lishing openstandadsfor behavioal modeling:ead node
will providevia http (or througha central registry) a behav-
ioral modelexpressedin termsof shared domain-specific
function/objectheories. A tool will supportvalidation by
assemblinghesemodelsand simulating animating or for-
mally analyzingthe assemblednodel, helping the userto
detectunfavomble behavios or feature interactionsin ad-
vance Thispaperpresentshe OPENMODEL proposaland
discussests potentialadvantaes, challenges, and limita-
tions.

1. Multi-stak eholder Distrib uted Systems

Definitions and Examples. Requirement&ngineering
has traditionally assumedhat the systemto be designed
is underthe control of a single staleholderwho (at least
in principle) determinesa consistentset of requirements.

1A preliminary versionof the ideasin this paperwere discussedn a
talk givenat the February2002meetingof IFIP Working Group2.9.
2© Copyright 2002,AT&T Corp.

Moderndistributed systemshowever, do notfit this mold,
sorequirementgngineeringnustadaptto handlethem.

A multi-staleholderdistributed system(MSDS)is a dis-
tributedsystemin which subset®f the nodesaredesigned,
owned,or operatedoy distinct staleholders.The nodesof
the systemmay; therefore be designecbr operated

¢ in ignoranceof oneanotheyor
o with different,possiblyconflictinggoals.

The Internetelectronicmail (email) systemis an MSDS.
Differententities(companiesuniversities,internetservice
providers (ISPs), and individuals) operateseners of the
email system. Individual users(private and commercial)
actasclients,sendingmessageandreceving themvia the
seners. Eachof theseentitiesoperatests node(s)accord-
ing to its own goalsandpriorities, usingsoftwarepackages
designedht diversetimesby differentgroupsof developers
eachhaving moreor lesslimited knowledgeof eachother
andof the governingstandardslocumentginternetRFCs).

The emening field of Web Servicesprovidesmore ex-
amplesof MSDSs.A Web Serviceis simply a serviceon a
network which performssomefunctionthroughapublished
remoteproceduresall interface usingtheworld-wideweb's
HTTP protocol as its “transportlayer”, typically using a
distributed object protocol, suchas SQAP, on top of that.
Theintendedbenefitsof this architecturencludethe ability
to dynamicallyandeasilycomposeheseservicesnto use-
ful businesdgunctionalitiesfor example sendingordersand
paymentsiown throughsuppliertreesandinvoicesandser
vicesbackup. Eachwebserviceis built, owned,andoper
atedby a distinctentity having its own capabilities knowl-
edge goals,andpriorities.

Other examplesof MSDS include the Internet as a
whole,wherehostsdesignedandgovernedby literally mil-
lions of differentstaleholdersnteroperateat the extremely
low level of the InternetProtocol, and today's telephone
network, wheremary companie®of widely varyingservice

scopeandgeographicaéxtentmustinteroperateéheirnodes
atthe signalingandvoice transportievel, yet aregoverned
by their own businessand nationalpriorities. Clearly, in a
highly interconnecteavorld, MSDSswill beubiquitous.

MSDS: No Such Thing as Requirements? From a
requirementsperspectie, the interestingthing about an
MSDSis thatit typically hasinconsistenhighlevelrequire-
ments Differentstaleholdershave conflictinggoalswhich,
in turn, placeinconsistentequirementsn systembehavior.
Of courseto operateat all theremustbe somelevel of con-
sisteny sothatthe nodescancommunicaténformation.

For example,the Internetemail systems consistente-
qguirementsncludetheSMTR, POP3andIMAP mail proto-
cols,aswell asmessagéormatdefinitions(suchasdefined
by RFC 822). However, it hasmary examplesof incon-
sisteny aswell. Spammergsendersof unwantedemail)
want their messageto getto asmary peopleaspossible,

yetinnocentuserswantto avoid receving spammessages.

Userswant the contentand (often) recipientidentities of
their message$o remainprivate, yet variousjurisdictions
(suchasthe U.S. governmentjeel it is their right to snoop
ISP traffic to watch for criminal actiities or intent. And
userswho sendWord (or other executabléfiles) asattach-
mentsenjoy the corvenienceyet userswhosefiles are ex-
posedor destryed or whoseserviceis deniedby emalil
viruseswould like to prohibit suchattachments.In each
of thesethreeexamplespnesetof staleholdersvantsa ca-
pability while anothemwantsto dery it.

In the Web Servicesdomain, consistentrequirements
include the HTTP, SQAP[7], UDDI[8], WSDL[10], and
WSCLJ[9] protocols. At a higherlevel, however, different
staleholdersplaceconflicting requirements.For example,
anenduserof aweb servicemay be forcedto supplyper
sonalinformation. This endusertypically intendsthatthis
be usedonly asminimally necessaryor orderfulfillment,
billing, andcustomersupport.Somewebserviceproviders,
however, may storethis informationin databaseandreuse
it in waysthatwould not be agreedo by theenduser An-
otherareaof inconsisteng lies in the termsusedto define
the specificationof the service(often expressedn WSDL,
but possiblyjust in naturallanguageon the openingweb
pageof theservice).Unspecifiedneasurementnits,or am-
biguousevaluative termslike “reliable”, “accurate”,“best
in class”,etc,canbeusedinconsistentlybetweerclientand
serviceprovider. Suchterminologicalinconsistenciesvill
inevitably ariseuntil standardntologiesaredevelopedand
required.

Validation Without Requirements? If an MSDS has
inconsistentrequirementshow could we possiblyhopeto
validateits designor operationMore precisely no system
satisfiesaninconsistentequirementLeaving asidethe in-
consisteng problemfor themomenthowever, nosinglein-

Corporate IT

Web Proxy Acme Wb Speedup
Servi ces
A
user | |
-

]

Y
UpToTheM nut e

News Co.

Figure 1. A problematic web service configu-
ration.

dividualevenknowstherequirementsf all thestaleholders
of atypical MSDS. In fact, for the large scaleMSDSsdis-
cussedbove, no oneevenknows how all the nodes(com-
ponents features)behae in detail. And all thesefactors
changerapidly anduncontrollablyin anMSDS.

Considerthe simple web servicesscenariodepictedin
Figurel. Herewe assumehat all of the end users web
accessesre sentby the corporatelT departmenthrough
the Acme Web SpeedupService, a caching proxy ser
vice. Thereare four staleholdershere, one for eachbox
in the diagram. The userwishestimely accesgo the Up-
ToTheMinuteN&swebservicefor theverylatestnens up-
dates.CorporatdT, on the otherhand,wishesto speedup
“the averageweb access’for all users. UpToTheMinute-
News provides (and chages money for) the latest news
updates. Acme Web Speedupknows it is appropriatefor
speedingip accesgo relatively staticpages Theendresult
is thatthe userfails to get up to the minute news updates,
even thoughhe haspaid for them. The reasonis that no
individual in the systemknows the behariors andrequire-
mentsof all thenodesandsothereis no oneto diagnosehe
problem:acachedpageis nottimely.

Ratherthan tackle what appearsto be an intractable
problem, | proposewe changethe problemto matchthe
way in which MSDSsaredesignecandusedtoday

Key Idea: Changethe validationproblemfrom
“doesthesystendo theright thing?” to “doesthe
systemdo theright thing for me(now)?”

By doingthis, we getrid of theinconsistenciedyecause
thereis now only one staleholderwho mattersand that
staleholdercan(in principle) definea consistensetof re-
quirements We arestill left with significantdifficulties, of
course First, the (now single)staleholdemusthave away
to find out whatthe variouspartsof the systemdo in order
to validatethat the systemwill behae desirably Existing

description®f nodefunctionalitiesareoftenambiguousin-
formal, incomplete Jackingin detail,or even purposelyin-
correct(dueto hiddenagendas)For example webservices
areoftendescribedn waysincluding naturallanguagepas-
sageswhich aresubjectto thewell known ambiguitiesand
informalitiesof NL. Often,all thatis known aboutaremote
email serviceis thatit is availableon TCP port 25. While
thatusuallyimpliesit will acceptemailmessagessingthe
SMTPprotocol,it is no helpin discerningwhatwill happen
to amessagenceit is acceptedy it.

Thenext sectionproposesanapproacho solvingthisig-
noranceproblem. Using it, we caneffectively reducethe
MSDS validation problemto more familiar model-based
validationproblemswhich canbeattacled by known tech-
nigues. We arestill, of course,subjectto the “usual” soft-
ware engineeringvalidation problemsof stateand theory
explosion,andfeature/componenhteraction;however, we
have largebodiesof researclandadevelopingbaseof tools
to attackthesemoretraditionalproblems.

2. OPENMODEL : Going Beyond Modularity

The traditionalway in which componentgpublishtheir
capabilities so that others (developers, users) can find
out their behaiior hasbeenthroughinterfacedescriptions
in languagessuch as CORBA’s IDL or WSDL[10] and
WSCL[9] for web services. However, interfaces,or even
allowed interactionsequencesas definablewithin WSCL,
do not provide enoughinformationto validatethe beha-
ior of a complex nodewithin an MSDS. For example, al-
mostall email seners satisfy the well known SMTP pro-
tocol sener behaior asdefinedin RFC 821, andyet con-
siderthewide rangeof behaiors possibleonceamessagés
acceptedrelaying,spamfiltering, forwarding,decryption,
andeven anorymousremailing. Clearly, we mustgo well
beyondsimplecomponeninterfacedescriptionsn orderto
supportvalidationof requirementsvithin MSDSs.

OPENMODEL solvestheignoranceproblemof MSDSs
throughopenmodeling Thekey ideasof OPENM ODEL are

e Each MSDS node has an executable specification
mode|

e Eachnodesenesthis onlinein a standardizecKML-
basedformat, either directly via HTTP, or througha
centralregistry;

e A tool canretrieve modelsof therelevantnodesof the
MSDS and assistthe userin validating single behav-
iors or classe®f behaiors of thecomposedystem.

A nodeis depictedschematicallyn Figure2. Theactual
nodecomponents abstractedby the executablespecmodel
throughthe abstractionfunction A. Every concreteinput

\ = Abstract A >

! Behavi or !

| Model Abst r act |

| St at e Model !

A A

! RN !

: A :
*\J—> Act ual c

B Conmponent -

State DB

Figure 2. An OPENMODEL MSDS node .

sequencecan be abstractedand simulatedby the model,
andoutputs(andstateread/updat@ctions)canalsobe ab-
stractedcandcomparedvith simulationoutputs.

Potential Benefits. Thereare several potentialbenefits
of OPENMODEL. First, oncethe modelsareretrieved and
a compositemodel assembledthe user can validate that
the systembehaesdesirably Most basically the usercan
create,simulate,and animateconcretebehaior scenarios.
Scenariccoveragemeasurementbols andother (heuristic)
testingmethodscanhelpthe usergainconfidencen setsof
behaiors. But more systematicapproachessuchasthe-
orem proving and model checkingcan also be appliedto
the precise executablemodels,finding bugsor increasing
confidencan infinite setsof behaiors. Note thatthis can
be doneduring designof a node(possiblybeforeits imple-
mentationevenexists) or duringuseby endusers.

Another benefitof OPENMODEL is “contract enforce-
ment”. If anodeclaimsto obey its model,anobsener can
sometimesctuallyverify thattheopenmodelcorrectlyab-
stractsthe actualinput/outputsequencesThereare mary
waysin which this may be possible for examplewhenone
upgrades componento a hew version(or oneby a differ-
entvendor).Onecanruntheold componenin parallelwith
thenew andcompareheabstracbutputsusingtheabstrac-
tion function A to mapactualinputsandoutputs)with each
otherto seeif thenew onematchegheold one.

Anotherbenefitof OPENM ODEL is its supportfor reuse.
A componenimodel providescheckablgformal documen-
tation of behavior. It alsoallows checkingproposedisesof
thecomponentor featureinteractions.

Finally, we shouldnote that the model publishedby a
componentanbethe sameas(or formally relatedto, such
as by abstraction)a formal model usedfor validating the
nodeshbehaior in isolation. Thatis, we getakind of “2 for
the price of 1 deal” by reusingthe validationmodelasthe
openmodelfor sharing.

OPENMODEL in the Email Domain. My previouswork
on feature interactiondiscovery in the Email domain[4
gives a flavor of how OPENMODEL could be used. In
thatwork, | analyzedencommonemailfeaturesdiscover-
ing 26 unfavorablefeatureinteractions.The approachwas
baseduponmodelingeachfeatureasa componenbf adis-
tributed system,assemblingdeatureinstancemodelsinto a
“typical” configuration,andthensimulatingscenarioslis-
coveredusingasystematideuristicscenaricselectiorstrat-
egy. | createdhemodelsby abstractinghebehavior of well
known real email features,suchas addresshooks, filters,
forwarders,and vacationprograms. | createdand assem-
bledthemby hand,but this is wherethe OPENM ODEL ap-
proachwould exploit sharednodelsandtool support.Once
the modelsare gatheredand composedyalidation (using
theSAT tool set)canproceedasusual.

For illustration, supposean email userwishesto config-
ure andstartusing new, feature-richemail client software.
An OPENMODEL scenariovould proceecdasfollows.

e Theuserinstallsandconfigureghe software.
¢ The OPENMODEL tool queriest for its sharednodel.

e The OPENMODEL tool retrievesmodelsof the users
ISP’s mail seners,aswell asthoseof arepresentatie
setof theusers correspondents.

e The OPENM ODEL tool (possiblyusingISAT tool suite
capabilitiedik e simulationandtheoremproving) sup-
portsthe userin checkingwhetherunfavorablebeha-
iors arepossiblein theway he hasconfiguredthe new
software. If arny arefound,the usercanthenreconfig-
urethe softwareor contactits vendor

e The OPENMODEL tool remainsavailableasneededas
a questionansweringool for whenthe userhasques-
tionsabouthis emailsystem.

Note that the email case study cited assumedstatic
modelcompositions However, in generalgxecutinga sce-
narioin a composedmodelwill resultin the discovery of
missingmodels(becausee.g.,a messagés sentto a node
whosemodel hasyet to be retrieved). An OPENM ODEL
toolwill likely suppordynamicmodelretrieval andintegra-
tioninto thecurrentsimulationor validation.In thewebser
vicesscenariof Figurel, theusers OPENM ODEL toolfirst
retrievesa modelof the browser, which leadsto retrieving
thatof thecorporatd T webproxy. Initial validationreveals
that requestsare forwardedto Acme, so Acme’s modelis
retrieved. This thenleadsto retrieving UpToTheMinute-
News’s model. At thatpoint, the OPENM ODEL tool hasthe
informationnecessaryo anticipate(or diagnose}he prob-
lem.

3. Requirementsfor a Modeling Language

This sectiondiscussesomeof the critical requirements
astandardized@PENM ODEL languageshouldobey.

Tool support. It must supportexecution(simulation)
of both single nodesand hierarchicalnetworked composi-
tionsof nodes.Thiswill enableuservalidationof behaior
aswell asanimation. Beyond this, it shouldsupportsys-
tematicvalidationmethodssuchasspeccoveragemeasure-
mentand propertyverificationthroughtheoremproving or
modelchecking.

Support for Shared Ontologies. Usersand develop-
erswant/needo think in termsof domain-meaningfubb-
jectsandoperationsWe muststandardize¢he terminology
usedto describethe objectsthat passbhetweemodesof the
MSDS so that modelsfrom different staleholderscan be
sharedandinteroperatén the OPENMODEL tool. For ex-
ample,email modelsmustagreeon what an “email mes-
sage’is andhow torepresenandaccesdts fields. Thereis a
largebodyof researclinto ontologies[$, but OPENM ODEL
ontologieswill needto containautomatedeasoningsup-
port (axioms,rules)in additionto entity-relationshignfor-
mation. Thesesharedontologiesguide the model devel-
operin picking anappropriatelevel of abstraction’for the
model,by definingtherepresentatioandgranularityof the
inputandoutputobjects.

Some Other Requirements. The models (and lan-
guage)should supportsingle-nodevalidation as well, so
that we cangain the 2 for 1 advantagementionedearliet
Theabstracstatemodelandaccessew it mustbefirst class
elementsn orderto enablebehavior sampling(e.g.for con-
tract enforcement).And finally, a computableabstraction
mapA mustbearequiredelementaswell, againto support
comparingobsenedbehaiorsto modelpredictions.

Evaluation of afew candidates.Therearemary plausi-
ble candidate$or the OPENM ODEL language] will briefly
review a selectionof themhere.

Executable$. exe, a. out) cansupportsimulation,but
they cannotsupportvalidation techniquessuch as cover-
agemeasurementr propertyverificationtools. We cant
evenguarante¢hey won't crashthe systemwhichis aseri-
ousconcerrwhenwe will beretrieving modelsfrom other
staleholdershaving different(andunknown) goals.

Java Language Souce Codeis safe and can support
simulation,composition,and even coveragemeasurement.
However, the state-modebeparations not adequatendit
is still too hardto verify propertiesof Java code.

Z is very expressve andsafe,but not executable.Auto-
matedreasoningn it is problematicaswell.

Low-levelmodelchedinglanguages(e.g. Promelaup-
port executionand model checking,but not arbitrary do-
mainspecifictheories/ontologiesAnd modelcheclers’dif-
ficultieswith the stateexplosionproblemarewell known.

UnifiedModelingLanguage (UML) hasanotoriouslyill-
definedsemanticsbut a disciplinedsubsemight be useful.

Infinite state executable specificationlanguages (e.g.
ISAT's P-EBF, SALSA[1], Action Language[P are the
best candidatesand seemto satisfy most of the require-
ments. They canbe usedfor modelingsinglenodesof the
MSDS. They canbe combinedwith a moduleinterconnect
languagesuchasEFCs[4]or WSFL[11], to supporicompo-
sition. They have alreadybeenshawn to safelysupportsim-
ulation, inclusion of domain-specificontologies/theories,
andinfinite statepropertyverification.

4. Limitations

OPENMODEL is not, of coursea panaceandhasmary
limitations. It is inevitable thatsomenodeswill fail to pro-
vide modelsat all, andsomewill have inaccuratemodels.
However, aslong as we are not expecting OPENM ODEL
to provide guaranteegit is more appropriatefor heuristic
bug pre-detection)this shouldnot deterus. Further even
if all modelsarepresenandaccurateall known validation
toolsaresubjectto the usualcompleities of the validation
problem: stateexplosion, theoryexplosion,andfeaturein-
teraction. Therefore,modelsmustbe abstractin orderfor
validationto betractable somodelingmayomit behaioral
detailsimportantto the detectionof undesirablébehaiors.
A balancemustbereachedothatausefulclassof problems
canbediscoveredevenafterabstraction.

Configurations. A lessobviouslimitation liesin thedif-
ferencebetweena modelandits configuration. For exam-
ple, it may be well known that a given MSDS noderuns
a particularoff-the-shelfcomponentsuchassendmai | .
And sendnmi | 's model shouldbe commonknowledge.
However, the real issuefor validationis how that nodes
sendnmai | instanceis configured. Staleholderswill be
muchlesswilling to exposeconfiguratiorinformationto the
public. However, someconfigurationinformationis more
sensitve thanothers,andit maynot all be necessarn or-
der to answerquestionsof interestto anotherstaleholder
For example, the actual encryptionkeys usedin encrypt-
ing emailbetweerusersareprobablynot neededbut infor-
mationaboutpeerrelationshipgwhich hostsarerelaysand
whichimplementwhichfeaturespresumablys. Moreover,
it maybethatnodeownerscanbe motivatedto revealsome
of thisinformation;e.g.,“convincemeyou have configured
sendnai | securelyandthenl will useyour service”.

Hidden Agendas. Anothercritical limitation is the re-
alizationthatsomenodesmay purposelyhide or obfuscate
certainof their activities or attributesthat are unfavorable
to other staleholders. For example,they may collect per
sonalinformation for one purposeand secretlyuseit for
other, lessdesirable,purposes. Or, they may adwertisea
high level of service but provide a lower level of serviceto

saze mong (e.g.,claiminga fully recoverablebackupsys-
tembut notreally backingup the usersinformationatall).
To deal with this problem, the validator mustremain
aware of the underlyinggametheory(costsand payofs) of
theMSDS OPENMODEL is simply notreliablein scenarios
whereotherstaleholdersare motivatedto cheat.However,
| believe thereare mary domainsin which the gamethe-
ory is favorableto OPENMODEL. For example,in the In-
ternetemail systemof clientsandseners,sener providers
tendto be motivatedby the bestinterestsof similar large
groupsof endusersand“good emailservice”is bestsened
by cooperationamongseners. It is the individual users
(clients)who have other motives, suchas spamming. An
OPENMODEL userwill only retrieve modelsfrom sener
componentr from clientsrun by peoplewith whomthe
userhasa cooperatie relationship. Message$rom adwer-
sarieamustbetreatedaspartof theervironment,sincetheir
modelswould not betrustworthy evenif they existed.
OPENMODEL shouldalsobe usefulandreliablein en-
terpriseapplicationintegration (EAI) scenarioswherethe
applicationdo beintegratedarecontrolledby asingle(log-
ical) staleholder A goodexampleof thelattercaseis when
a compaly acquiresassetsn a merger and mustintegrate
theminto its own assetbase. All modelsshouldbe accu-
rate,becausehey werebuilt for internaluse(systemevolu-
tion andmaintenancevithin the respectre companies.
OPENMODEL is alsousefulin situationsvherebehaior
sampling(for contractenforcementseeSection?) is possi-
ble, andwherelegislationcanenforcemodelfidelity.
Evenin the faceof theselimitations, the email feature
interactioncasestudy[4 givesushopethatthereis still sig-
nificantheuristicvaluein openmodeling.

5. Related Work

Fickaset al[3] describea system,Emu, for monitoring
the executionof a systemasit carriesoutaplanfor achiev-
ing whatthey term“ephemeral’requirementsthosehighly
dependentn context andnotlik ely to persistfor long peri-
odsof time. The similarity with this work is thatthey, too,
have madethe conceptualeapfrom globalsystenrequire-
mentsto single-stakholderrequirementghat may not be
trueforever. OPENMODEL couldcomplementheir system
nicely by allowing themto discover behaiors of relevant
interactingnodesof the MSDS asneededduring monitor
ing of particularrequirements.

Modularity and “black box reuse” are not enough.
Distributed object systems (CORBA/IDL, J2EE/EJB,
.NET/DCOM)andblackboxreusetechnologieslo notpro-
vide enoughinformationfor a userto discover whetheran
MSDS will operatedesirably Moreover, thereis empiri-
cal evidencethat modularcompositionof componentsn
an MSDS s unlikely to “just work™: | found thatroughly

17% of 156 scenariosexaminedin the email domainre-
sultedin undesirabldehaior. OPENM ODEL complements
thesetechnologiedy supplyingmissinginformation.

UDDI is starting in the right direction. The Univer
salDescriptionDiscovery andIntegration(UDDI) protocol
suiteis essentiallya “yellow pagesfor the web”. Thatis,
it is intendedto provide a way to discover andlearnabout
web services. UDDI definestModels which are various
typesof declarationsof behaioral propertiesof web ser
vices. Web ServicesDescriptionLanguage(WSDL)[10]
allows declaratiorof interfacesignaturenformation,simi-
larto CORBA'sIDL. Web ServicesCorversation_anguage
(WSCL)[9] goesbeyond interfaces,definingallowed con-

versations which are sequencesf queriesandresponses.

Web ServicesFlow LanguaggWSFL)[1]] providesa way
to declarestaticcompositionsof web servicecomponents,
essentiallya module interconnectlanguagefor web ser
vices. WSDL and WSFL addressaspectof the ignorance
problemthat OPENM ODEL is intendedto solve, but do not
gofarenough.WSCL, while usefulin its own right, seems
to overlapwith the information provided by a full beha-
ioral model. OPENM ODEL modelsshouldfit into theUDDI
framework asa particularlyrich form of tModel.

A lessonfrom P3P The Platform for Privacy Prefer
enceqP3P)[q is aworld widewebconsortiumnitiativein-
tendedo helpusersprotecttheir privacy while web brows-
ing. Theideaof it is thateachweb site declaresa P3Pde-
scriptionof how it handlessensite information. The user
declarespreferencesabouthow he wants his information
handled andthe P3Penabledorowserdecidesat eachweb
sitewhetherthe site conformsto the users wishes. Thisis
analogougo the OPENM ODEL approachin thateachnode
declaresa modelof its privacy behaior. Thus,P3Psenes
asasimpleexampleof OPENMODEL in thenarrav domain
of privacy behavior. However, it suffers from unfavoiable
gametheory (mentionedabove). It only works if the web
site operatorsare nice guys who don't gamethe system.
P3Phasno way to enforcedeclaredpolicies, nor evento
detectwhenasite’s behavior is inconsistentvith its policy.

6. Summary and Futur e Work

Multi-stakeholderistributedsystemgpresenmajornew
challengego requirementengineering:globally inconsis-
tent requirementplacedby stakeholderswith conflicting
goals, and the ignoranceprobleminducedby the limited
andunreliablecommunication@mongdesignerandoper
atorsof the nodes. We canavoid the global inconsisteng
problemby focusingon the questionof whethera system
meetsthe needsof a single staleholder Oncethat shift is
made,the OPENM ODEL proposaladdressethe ignorance
problem. OPENMODEL-basedtools will first gatherthe

open,sharedmodelsdeclaredby MSDS nodesrelevantto
theuser It will thenapplyarangeof validationtoolsto see
whetherthe systemwill meetthe users needs.The assem-
bled systemmodel can then be incrementallymaintained
overtime soit is availableto theuserto answerfuture ques-
tions, or to supportthe userin designinga new nodecapa-
bility. A pilot studyin the emaildomainprovidesevidence
that OPENMODEL canbeusefulin validatingMSDSs.

Of coursethereis a greatdealof futurework. First, we
mustsettleon amodelinglanguageanddefinethe appropri-
ate XML DTDs for representingnodels. Next, in a given
domain, we must establishappropriateshared(de facto
standard)ontologiesto guide staleholdersin the model
building efforts. Email andweb servicesare two promis-
ing domainsto pursue.Also, we needto engineera setof
highly usableOPENM ODEL tools, basedon existing mod-
eling, simulation,andvalidationtools. Theremay alsobe
somavhatlessambitiouscourseghat couldbefollowedas
well. For example,if we relaxour concerroverformal ver
ification, we couldjust useJava asmodelinglanguageand
supportsimulationand coveragemeasuremenvf models.
Techniquedor retrieving andloading classesnto running
JVMs arewell known from appletdesign.

References

[1] R.Bharadvaj andS. Sims. SALSA: combiningconstraint
solverswith bddsfor automatidnvariantchecking.In Proc.
Tools and Algorithmsfor the Constructionand Analysisof
System$TACAS2000) 2000.

[2] T.Bultan,R.GerberandC. League Verifying systemswith
integer constraintsandbooleanpredicatesa compositeap-
proach.In Proc.1998Intl. Symp Softwae TestingandAnal-
ysis,SEN23(2), pagesl13—123.ACM SIGSOFT1998.

[3] S. Fickas, T. Beauchamp,and N. Mamy. Monitoring
ephemeralrequirements. Technicalreport, University of
OreggonComputerScienceDept.,May 2002.

[4] R.J.Hall. Featureinteractionsin electronicmail. In Proc.
SixthIntl. Workshopon Featuee Interactionsin Telecommu-
nicationsand Softwae SystemdOS Press2000.

[5] Ontologyorg: enabling virtual business (web site).
http://ww. ont ol ogy. org/.

[6] Platform for privay preferencesproject (web site).
http://ww. w3. or g/ P3P/ .

[7] Simple object access protocol (soap) 1.1 (web site).
http://ww. w3. or g/ TR/ SOAP/ .

[8] Universaldescriptiondiscorery andintegrationof business
for theweb (website). ht t p: / / www. uddi . or g.

[9] Web servicesconversationlanguage(wscl) 1.0 (web site).
http://ww. w3. org/ TR wscl 10.

[10] Web servicesdescriptionlanguage(wsdl) 1.1 (web site).
http://ww. w3. or g/ TR/ wsdl .

[11] Web services flow language (wsfl) 1.0. WA
4.i bm coni sof t war e/ sol uti ons/ webser-
vi ces/ pdf / WSFL. pdf .

Using the Semantic Web to Construct an Ontology-Based
Repository for Software Patterns

Scott Henninger
Department of Computer Science & Engineering
University of Nebraska-Lincoln
scotth@cse.unl.edu

Abstract

Patterns, particularly design and usability patterns, have become a popular way to disseminate
the current state of knowledge in certain software development issues. Many books have been
written and people are using the pattern approach to encode knowledge ranging from
management practices to risk assessment patterns.

The continued explosion of patterns collections have caused a couple of clear problems. The fir
is the issue of quality and how one knows whether a pattern provides sound advice. The second
is finding the right pattern for a particular problem. In this abstract, I propose the semantic web
as a medium to start representing the relationships between patterns and track which are used
most often or rated highly by peers. This approach not only supports the process of finding
patterns, but also allows for the construction of agents that let developers know when a given
pattern is applicable.

1. Design and Usability Patterns

Beginning with the seminal Gang-of Four design pattern book [Gamma et al. 1995], the software
development community has embraced the pattern concept first sued by Alexander on
architecture [Alexander 1979]. The general idea is to describe a commonly occurring problem,
one or more solutions that have been shown to be effective, along with other contextual
information such as why the problem occurs (forces) and the context in which the solution is
effective. Perhaps the largest pattern communities in the software development area are the
design and usability patterns communities [Borchers 2000], but other types of patterns, such
process and management patterns have recently emerged, underscoring the effectiveness of the
pattern format to describe problem-solution pairs.

While many researchers have focused on creating and validating patterns, few are thinking about
how the patterns should be delivered to or otherwise made usable for software developers. A
specific problem is that while Alexander made strong statements about the relationships between
patterns to create a “language” capable of creating the whole solutions, at best the relationships
between patterns in a collection are weak, and relationships between patterns in different
collections is nonexistent. There is also no formal mechanism to assess and refine usability
patterns on the community level.

2. Formalizing a Community of Practice for Patterns

A major focus of both the BORE (Building an Organizational Repository of Experiences)
[Henninger 1997] and GUIDE (Guidelines for Usability through Interface Development
Experiences) [Henninger et al. 1997] efforts is to improve the process through the experiences

B sw.rdf - WordPad] 3]

File Edit Wiew Insert Format Help

Dlsle| SR &) &lee]-] |

<SW:Searching rdf:shout="gSW:SU_00096" |
5U:Pattern Neame="Search Index"
A Resource Metadata - Microsoft Internet Explorer provided by America Online rdfs:lanel="3W:3U_00096">
[e e ———— <8U:Supported By rdf:resource="£SW;SW 000887/ >
Fie Edt View Favortes Took Help /S Searching>
bk - o= - (@ [1) 24| @Search (lFavortes (BHstory | Ehe g oA - 2] W <SW:Searching rdf:sbout="sSH;SU_00097"
ndiess [E] " YT YS——— 5U:Pattern Name="Search_Tips"
ess [&] Di\Scott|BORE|Semantic Web|RDF-HTML examplelAdvanced_Searchhtm rdfs: label="ST:3U_000977/5
<SW:Navigation rdf:sbout="&3W:3T_Ontology_000S3"
Advanced Search 5U: Author="Martijn van Uelie"
5U:Context="Hierarchically structursd large swount of data”
. 5U:Example="Apple's weh site”
Author: Meartijn Van Welie ST:Known_Uses="yww. icommedialsb.nl”
Problem: User needs to find a specific ttem in a large collection of items. SW:Pattern Name="Double Tab"
Principle: Filteting 5U:Principle="Feedback"
i . SU:Problew="Users need to navigate a hierarchical strusture”
Context: This patterns builds on the Search pattern by adding some advanced search functionality. Advanced search is inter 5V:Rationale="Tabular metaphor is well-known"
users. Users typically have more than superficial knowledg; Pattern SWiRelated Patterns="Bread Cruwbs”
the mete nowice users. SW:Solution="Use a double tabular to show the two topmost levels"
Forces: The users want full control of the term matching possibilitied Design SW:URI="http://www.welie.com/patterns/doubletab. htl"”
Users may want to filter the items that are being shown as ; rdts: label="5U:3¥_Ontelogy_DDOSI">
Behavioral <3W: Supported By rdf:resource="&SW;SW 000717/ >
Users may want to control the way resulis are presented S = 25U
. . Code_Optimization <5T:Enown_Uses>wun. swazon. com</ Si: Known_Uses:
Solution: Offer a special advanced search function with extended tes Cotle Robusiness Ui Known Usessuvw. apple. cowe/ SU: Knows, Tsess
Example: . h ¢ - </FW:Navigation>
earch for OhCurrency <SW:Page_Element rdf:skout="£S0;30_Ontology 000547
Find n Creational 5U:Context="Numerous items to f£it on one page"
ind results using ® Al of the words Fundamenital Frow SU:Examwple="Google paging scheme"
Any of the wards 5U:Rnown_Uses="wuw.google . com”
GRASF’) . 5U:Pactern Name="Paging"
The exact phrase Organizational_Coding ST:Principle="Data Hanagemant”
. Partitioning SW:Problem="User needs to browse through a large list of items"
Return results in English AT R le="g T £ "
Structure Facade, Deconaton, B :Rationale="Giving user the most important information
) , 5U:Related Patterns="Tabbing"
written anytime & before |Jan-2000 Testing 5U:Solution="Present the results grouped in pages"”
after Usability SW:URI="hrtp://vuw. welie.com/patterns/paging. htul"
" rdfs:label="3T:3U_Ontology_00054">
Show results o — Infu_rmatlun <SW:ilternative rdf:resource="gSW:SW 00088"/ > |
per pag Project For Help, press F1 4
Sort results on ® closest match Style
date GUI_Design
Non_Weh_Pattern
@] Done Browsing Safkays
Feedback ekt
Interaction Like in the real world
Modes Helping Hands
Presentation Grid Lapout
Selection Freview
Weh_Pattern
Ecommerce Shopping Car
Mavigation Doubla Tab
Page_Element Paging
Searching Advanced Search

Figure 1: The left window of this figure shows a pattern rendered through an RDF representation using an XSL file
to render the image. The middle window shows a sample pattern, showing the GOF and usability patterns in
particular. Note that the names to the right in italics are instances of the patterns. The Right-hand window shows an
example of RDF code. Note that it is compatible with XML.

gained in software development efforts, hence the terms “Experience” in both of the system’s
acronyms. Perhaps more important is the focus on using the feedback to refine both the patterns
and the context in which the patterns are most applicable. Both models have a meta-process in
which development teams review the adequacy of the information supplied by the rule-based
system and submit deviation requests when the recommendations are inappropriate or
inadequate. These are forwarded to process and/or usability specialists in charge of the
repository. Changes based on these deviation requests can then be made, facilitating a
continuous learning process involving both creating new patterns and refining contextual
information about the patterns [Henninger 2001]. The end result is the continuous creation of
new and refined patterns that fit the needs of a given development organization, or the patterns
community as a whole. Thus, we are aiming to create a community of practice [Brown, Duguid
1991] in which people exchange “stories” or patterns about what has worked in the past and
when it may be applicable.

3. Using the Semantic Web to Deliver Software Development
Knowledge

The Semantic Web [Berners-Lee 1998] is a Web-based technology that extends XML by
providing the means to define ontologies, the definition of objects and relationships between
them. This allows machines to make intelligent inferences about objects across the Web. This
can allow intelligent agents [Hendler 2001] embodying knowledge about certain aspects of
software development (much of it may be organization-specific) to make intelligent inferences
that can be used as the basis for improved decision-making on software development processes,
usability issues, etc.

Currently, the technology is in flux, but we have been experimenting with the Resource
Description Framework (RDF) [Klein 2001] and the newer and less stable Defense Agency
Markup Language (DAML) [Burke 2002], which also includes an Ontology Inference Layer
(OIL). Both are knowledge representation languages with roots in semantic networks, but built
to work on the Web. Our plan is to begin collecting patterns and relationships that are
represented in RDF and/or DAML files. Figure 1 shows a sample pattern, an ontology focusing
on usability patterns, and part of the RDF representation for the usability pattern domain.

3.1 Using the Semantic Web as a Communication Medium for Communities of Practice

Our overall goal is to set up a repository where pattern designers can post their proposed patterns
and have them evaluated by peers and experts. Not only would this help consolidate some of the
knowledge in the area, it will provide the means to collect the patterns in a common area (a
virtual common area, as RDF/DAML files can be stored on servers worldwide) so people can
argue and come to a consensus on both the validity of patterns and where the patterns belong. A
key to the success of such a program is agreement on structure, only part of which can be
alleviated by the object-oriented and flexible structured that can be created by these knowledge
representation languages. We are experimenting with just this part of the problem by looking
specifically at usability patterns.

Here are the following steps we are following to turn isolated collections of patterns into a
world-wide repository structure designed for computation and r intelligent agents:

1) Choose a Web-Based Knowledge Representation Language. This choice has been made
easier by Protégé [Noy et al. 2001] and other ontology tools that will translate an ontology
into a number of knowledge representation languages. Our initial steps have concentrated on
the more stable RDF, but we will soon migrate to the more powerful DAML.

2) Create an Initial Domain-Specific Ontology. An initial ontology is being constructed that
describes the domain of usability patterns, as shown in Figure 1. An ontology is a formal,
explicit specification of a shared conceptualization, meaning that defined terms and
relationships between them are specified in machine-readable manner, and generally agreed
upon by humans.

3) Create a site for Collecting Patterns. As shown in Figure 2, we are constructing a Web site
that allows people to add both instances of pattern classes to the repository, including
relationships between patterns. New patterns instances and classes will go through and
evaluation process and posted in the RDF/DAML file(s) for use by other organizations.

3 Gtep 2 and 3: Enter Information and Add - Netscape =10l

File Edit View Go Communicator Help

¥ Step 1 of 3: Choose class - Netscape - - - . %

: - By :

Flle Edit Wiew Go Communicator Help E i_ Q’ \a ‘;ﬁ 2 =1 Ii @ §§ J@'Wh - dﬂ

- ; Bookmarks Location: | http: //cse-fergd 1. unl edu/patterns /ecommerceadd. hirl 2 at's Relater

a - - .. r | S

49 ddonsdB P o

i w!‘Bookmalks . Locat\on:|hltp:f.fcse—fergd1.un\.edufpattems/ Step 2 of 3: Enter Pattern Information =
Step 10of3 value attributes

Class : Usability > GUI Design > Web > E-Commerce
1. Choose a class that best describes your usability pattern Fattem Hams ; [a new pattern

Author ; [Scott Hennin asr
[Usability }{GUI Design}

Problem :

Principle :

Mo il

Context :

Feedl Kl

Solution :

Non-Web

Rational :

http /) cee-ferg4L.unl=du/patterns/imad my-img. gif
Example :

Ll

= |

& =0= [Document: Done

nyul;lﬁ;l'_lﬁ;h_l;l'_lgl;l;tl;l;h_tl;t

=\ [
z 2 2 . =
= -) 3 =]
2 5 g 3
E

E-Commerce

| =p=| = [86% oF 49K (at 1 3Kfser, 5 secs remaining)

Figure 2: The left-hand window shows the current class structure of the Usability Pattern ontology. The right-top
window shows a partially filed in window to add a new instance to the E-Commerce class.

4) Other Organizations Place Instances on the Web. Provided that people agree on the overall
ontology, RDF/DAML files containing instances can be placed anywhere on the Web. For
example, someone creating a collection on e-Commerce usability patterns can place their
instances in an RDF/DAML file for others to use. If, however, this person or group wanted
to create, for example a subclass of e-Commerce, such as “Web Storefront”, then they would
need to get agreement amongst the patterns community to change the schema (class
structure), otherwise, other agents would not be able to utilize their class structures.

5) Instances are Collected for Processing. The instances are collected in a database or some
representational medium. This can be accomplished by either Web crawlers or brokerage
services. The advantage of the first is that organizations can work independently, and the
advantage of the second is enhanced trust — the broker can be used to verify the source, keep
statistics on customer satisfaction, etc. We are using he second strategy.

6) Agents are Created to Make Intelligent Decisions. Given the ontological structures, agents
can be created that make inferences about the information supplied. For example, an e-
Commerce pattern for “Server-Side Information Collection” cold have a relationship with a
“Database Server” class stating that one of the instance of the Database Server patterns
(which could include e-Commerce solutions using Oracle, Sybase, etc.) must also be chosen.
Other constraints could also be imposed by the agent that makes an automatic selection of the
database given the project attributes, possibly all represented in patterns. Other kinds of
inferences are also possible [Fensel et al. 2001].

The end result should be the creation of agents that can reason about usability pattern and deliver
them to software developers to improve the quality of user interfaces. In our case, the agent is
BORE (which has been combined with GUIDE) [Henninger 2001], but others may create their
own agents with different assumptions and computational inferences.

4. Current Status and Future Work

The current Web site shown in Figure 2 is being developed and should be ready for deployment
at the end of the summer. We will draw on the emerging Usability Patterns community
[Borchers 2000] to place their existing patterns in the repository and create new ones to fill in
details not found in the repository. We will initially seed the repository with some patterns
available on the Web, with author permission, such as van Welie’s Amsterdam Collection [van
Welie 2002]and Tidwell’s Common Ground [Tidwell 1999] collection.

We will initially perform the validation process, but will gradually turn this over to subject area
experts [Ackerman, Malone 1990]. In parallel, we will continue to evolve the BORE system to
utilize these patterns in the software development process.

5. References

[Ackerman, Malone 1990] Ackerman, M.S. and Malone, T.W., Answer Garden: A tool for growing organizational memory.
Proceedings of the Conference on Office Information Systems, (1990), ACM, New York, 31-39.

[Alexander 1979] Alexander, C. The Timeless Way of Building. Oxford Univ. Press, New York, 1979.

[Berners-Lee 1998] Berners-Lee, T. Semantic Web Roadmap, W3C Semantic Web Vision Statement, 1998,
http://www.w3.org/Designlssues/Semantic.html, Last accessed on 2/20/2002.

[Borchers 2000] Borchers, J. CHI Meets PLoP: An Interaction Patterns Workshop. SIGCHI Bulletin, 32 (1). 9-12.

[Brown, Duguid 1991] Brown, J.S. and Duguid, P. Organizational Learning and Communities-of-Practice: Toward a Unified
View of Working, Learning, and Innovation. Organization Science, 2 (1). 40-57.

[Burke 2002] Burke, M., The DARPA Agent Markup Language Homepage. http://www.daml.org/, 2002.

[Fensel et al. 2001] Fensel, D., van Harmelen, F., Horrocks, 1., McGuinness, D. and Patel-Schneider, P. OIL: An Ontology
Infrastructure for the Semantic Web. IEEFE Intelligent Systems, 16 (2). 38-45.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, Reading, MA, 1995.

[Hendler 2001] Hendler, J. Agents and the Semantic Web. IEEE Intelligent Systems, 16 (2). 30-37.

[Henninger 1997] Henninger, S., Tools Supporting the Creation and Evolution of Software Development Knowledge.
Proceedings of the Automated Software Engineering Conference, (Lake Tahoe, NV, 1997), 46-53.

[Henninger 2001] Henninger, S., An Organizational Learning Method for Applying Usability Guidelines and Patterns. 8th IFIP
Working Conference on Engineering for Human-Computer Interaction (EHCI'01), (Toronto, 2001).

[Henninger et al. 1997] Henninger, S., Lu, C. and Faith, C., Using Organizational Learning Techniques to Develop Context-
Specific Usability Guidelines. Proc. Designing Interactive Systems (DIS ‘97), (Amsterdam, 1997), 129-136.

[Klein 2001] Klein, M. XML, RDF, and Relatives. I[EEE Intelligent Systems, 15 (2). 26-28.

[Noy et al. 2001] Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. and Musen, M. Creating Semantic Web Contents
with Protege-2000. IEEE Intelligent Systems, 16 (2). 60-71.

[Tidwell 1999] Tidwell, J., COMMON GROUND: A Pattern Language for Human-Computer Interface Design.
http://www.mit.edu/~jtidwell/common_ground.html, 1999.

[van Welie 2002] van Welie, M., Guidance/Feedback Patterns. http://www.welie.com/patterns/index.html, January, 2002.

Managing Software Projects in Spatial Hypertext:

Experiences in Dogfooding

Frank Shipman
Center for the Study of Digital Libraries and Department of Computer Science
Texas A&M University
College Station, TX 77843-3112, USA
shipman@cs.tamu.edu

Abstract

Managing long-term, research-oriented software
projects requires more flexibility and open-endedness than
most production-oriented software processes provide. We
have been exploring the use of spatial hypertext to manage
such projects. Spatial hypertext allows users to place
information objects in visual spaces and use visual cues
and spatial relations to represent inter-object relations.
Over time, users develop a visual language to express
characteristics of their task. The Visual Knowledge Builder
(VKB), our particular spatial hypertext system, uses
heuristics to recognize structure in user-generated layouts
and includes navigable history for returning to earlier
states of the spatial hypertext. This paper reflects on our
experiences in dogfooding — using our own research
prototype — for two projects for more than two and a half
years and what these experiences might mean for using
spatial hypertext in other software development contexts.

Keywords

spatial hypertext, software development

1. Introduction

Software development takes place in a wide variety of
contexts, yielding an equally wide variety of software
engineering processes. Some contexts, such as life-critical
applications, require stability and correctness and are
willing to expend resources (including delaying delivery
time) in order to achieve these goals. Other contexts,
including much software developed for home use, are time-
to-market driven, looking to gain market share with the
potential of providing bug fixes later and enhancements

through a series of versions of the software. Research
software is even more extreme — the software is being
developed to explore what is possible within a design
space. In the research context, reliability need only
support the project’s mode of evaluation, e.g. proof-of-
concept demonstrations, laboratory experiments, and
limited real-task usage being common.

Different project management software is appropriate
within these different contexts. We are exploring the use of
spatial hypertext, with its emphasis on free-form
expression, in the project management of research
software. Spatial hypertext users place information objects
in visual spaces and use visual cues and spatial relations to
represent inter-object relations [4]. For example, they may
categorize objects by creating lists or using color. Over
time, users develop a visual language to express
characteristics of their task. Our system, the Visual
Knowledge Builder (VKB), includes a spatial parser for
recognizing structures in the layout and supporting users in
the manipulation of these structures [7]. Additionally,
VKB records the evolution of the workspace as a navigable
history with multiple access mechanisms.

The next section provides a brief overview of VKB, its
spatial parser, and its history mechanism. Following this is
a description of our use of VKB for managing software-
oriented research projects. The paper concludes with a
discussion of how our experiences might inform the use of
spatial hypertext in other software development contexts
and the development of project management software.

2. The Visual Knowledge Builder (VKB)

The main Visual Knowledge Builder interface, shown
in Figure 1, is a two-dimensional workspace with controls
at the top and message bars below. Users collect and author

:“haoweiShared' VKBO8 \wp3.vkb
File Edit View Format Arrangement Tool Help

=lolx|

(=] @& EEoea8ardrdrd [I5dd @

< <] 0 > B Medum ~ |

Walden's Paths

Center for the Study of Digital Libraries
Texas A&M University

[T0 Do List

Real Soon Jcheckinto NSDL portal |

|imematiuna|izatmn | quiz authoring tool

Iimegratinn of visual redesign I long & shart quiz

‘ integrate presentation mode | scenarios of guiziserver use

Icheckmto Ispell I | fuiz tied to server |

authoring tool distribution
WP NSDL distribution

study data analysis

| guizipath authoring connection |

context-sensitive
page change mefrics

term vectars for paths
INetscape 6.2 Opera hrowsers I

L) 25060

25000 |4j26/02 3:27:09 PM

FPaper topics - areas forwurk]

| Maintenance Tool Potential Papers ‘

Modifications to algorithms
& comparison to priot work

Maintenance tool -- supporting
dealing with changes for authars

context-sensitive metrics of change

‘ Educational Experiences |

=
£,

| Localteachers |

\gi\wq_l
|ldeas for Internationalization

knrran

= P
T 3
w @D g

©
3
o

Path and Guiz Ev;

What dow

Do paths in

o=

2= I} =
=] =
o2 3 E

7 | .

-

[}]

Figure 1. Project workspace with three collections containing software development
tasks, paper-writing tasks, and brainstorming for a particular software extension.

information in the form of rectangular objects containing
text, attributes and values, links to files or URLs, and
images. User’s express interpretations, e.g. categorizations
and relations, through the placement of objects and the use
of visual attributes, such as border and background color,
border width, and font type, size, and color. The workspace
also includes “collections”, two-dimensional spaces
embedded in the top-level workspace or another collection.
Users may navigate into a collection to see more of its
contents. Figure 2 shows the results of navigating into the
“To Do List” collection in Figure 1. For more information
on general VKB functionality see [7,8,10].

Figures 1 and 2 show a workspace used for managing a
research project with five or more participants at any one
time. This space has been in use for over two years in
weekly project meetings. Writing tasks are placed in the
“Paper topics -- areas for work™ collection and system and
design tasks are found in the “To Do List” collection. Over
the period of use, dozens of tasks have been identified,
given a priority, and placed in the “Done” collection on the
right side of Figure 2.

The second toolbar in Figures 1 and 2 provides access to
the history of the workspace. VKB records all the editing
events and allows users to play this record forwards or
backwards, navigate to specific types of events, or locate
the state of the workspace on a particular date [6]. This
history mechanism is similar to Reeves’ embedded history
[5] and Hayashi’s temporally-threaded workspaces [1].

2.1 Structure Recognition

To aid the manipulation and later formalization of
visually-represented information, VKB attempts to
recognize spatial structures as they are created in the
workspace via a spatial parser. The spatial parser was
developed to recognize structures found to be common in a
variety of virtual and physical layouts [9], such as the lists,
stacks, and composites in figures 1 and 2. Users can access
different scopes of structure through hierarchic-click
selection and the recognized structures are used to generate
suggestions for placement, formal attributes, and relations
of information objects [10].

= VKB < <H:"haowei‘Shared\VKBOB'\wp3.vkb>> ol x|
File Edit ‘iew Format Arrangement Tool Help

(=% @& F50e80o/drddddd (000 (=4

(<[<] 1] > [P Medium | D250 4262 3:27:00 P
iTo Do List]
Real Soon

Soon

Iimegrating hew term vector comparisons I

Snmeday Tasks

Someday

All the Time (in our copious free time ...}

fo nana™
[

]

Figure 2. Navigating into “To Do List” collection in Figure 1 shows lists indicating the
priority of tasks, border colors indicating person responsible for task, and border
width indication progress on task.

Figure 3 shows a limitation in the spatial parser. Much
like the space seen in figures 1 and 2, this is a project
workspace wused in weekly meetings. Unlike the
arrangement in the prior space, this VKB space uses
horizontal position to indicate a continuum of priority. The
spatial parser recognizes (some) horizontal lists in this
structure but does not include the notion of an ordered list,
much less the use of space to represent continuous values
of an attribute such as priority. Techniques from Hsich’s
VITE [2,3], which supports continuous and discrete
mappings between structured data and a visual
representation, could aid in this example.

2.2 Navigable History

One feature of VKB that has been particularly useful
within the context of project management is the navigable
history. The initial to-do lists had relatively few tasks but
have grown as dozens of tasks being generated (and fewer
being completed) during each year. During this time, the

‘haowei‘Shared'VKBO08 "' vkb-group.vk
File Edit View Format Arrangement Tool Help

=lolx]

=% @& @o0e0forfrfddde 000 @914

" 5 saze p
<A<] > |[pb veum ~] Die2 ooz s 357200
|Systemn Features
Mecassary features Pogsible features 7
- suggestions
suggestion menufor | | suggestion in context far suggestion clean up stnater type HOS-like agents
symbolsicollections history and use attrss relations preconditions suggestion suggestion

inhetitance using

type creation

Iaﬂribute suggestiunl
suggestion

tuning visual
preprocessar

collection creation
suggestion

spatial structure

Wirtual Classifier

hierarchic
agglomerative

relation suggestion
Iohger term vectors

‘ maore complete export ‘ | ¥ML output of selection

| |)<ML output nfpanicularanrs|

clustering layout or alignment workspace
based on atiributes scaling
=ML Output based Imhemance I hard to soft
an visual layout spacing in paste

filter history list hased an

Iannutatmns of I I_I
tiributes far hist
history WAL attributes/content

playback of collection or
ohiect's history

Iogarithric distribution of
history hash marks

‘ editing of history

relative layout of graup Move | | drawing on the

XML data file Tormat -

background of collections
second thread for [ading

remateflocal inclusion af
WIE files in collections

visual bypes ink data base dewidgetization
Completed
history to archive

WKB publisher

Recurring tasks

Wersian 1.0

IMaC 05 I

User Manual

i

encrypted password
and read-only tag

k| cuticopyipaste in tex
T
‘igate @

-

[¥]

]

Figure 3. System features placed in priority from left to right and classified among

different themes from top to bottom.

visual representation — the semantics of different colors
and border widths — has evolved to cope with more tasks
and to represent characteristics of tasks considered
important later in the project’s development. As such, the
visual attributes of older tasks (particularly those in the
“Done” or “Completed” collections) cannot be interpreted
based on the current meaning of those attributes. Navigable
history allows returning to earlier states of the workspace
to determine the meaning of the visual representation.
Also, by going back to prior times in the workspace, the
creation and modification of tasks can be viewed. Figure 4
shows the workspace from Figure 3 approximately | year
earlier.

3. Experiences from Dogfooding

Dogfooding is the use of one’s own systems for
debugging and iterative design. It is not a substitute for
getting users involved in design and formative or
summative evaluation. We have been using versions of
VKB for note taking, preparing papers and presentations,
project management, and conference organization. VKB

has also been in use by members of the hypertext research
community (outside of Texas A&M) for over two years.

Our experiences using VKB to help manage the
research projects shown in the above figures began in
November, 1999. The VKB spaces are projected and edited
during weekly meetings. Because the project team
members (faculty and students) are in the room during
most editing of the space, the implicit nature of the
representation remains comprehensible. The face-to-face
setting promotes the use of conversation to repair
breakdowns when visual changes are not understood by all
participants.

The visual languages have also become the focus of
humor. For example, border color in Figures 1 and 2
indicates who has primary responsibility for each task.
When new tasks are created there can be a variety of
suggestions as to what color it should be assigned. As
border thickness indicates progress, there is competition
surrounding the changing of task borders and movement of
tasks to “Done”. Finally, for some of the most dreaded
tasks — like writing journal papers — the font gets bigger
each week until some progress is achieved. Clearly, group
personality plays a large role in such activity. While we

haowei‘,Shared' VKB08" vkb-group.vkl
File Edit View Format Arrangement Tool Help

=lo|x|

(=% | (@@ \-HDI\DlElIlEI\lDIDEE_FmIFm I S

<& History Sessions x|

[<[1 [[T Medum ~] =

History Hierarchy ————— Controls
© [Tue Aug 26 15:41:28 CDT 2001 [«

textual & visual
suggestions
Relations between Iﬂnd related objects I Imher\tance I
ohjects

HML output of selection
¥ML output of paricular atirs

agglomerative Ell
clustering layout or alighment

based on atributes [

wo

System Features| © [Tue Aug 07 15:25:56 COT 2001 Session ¥
* || @ C3 Mon Jul 23 15:17:55 COT 2004
IE © 3 Tue Jul 17 15:53:48 COT 2001 ReScan
- SRS @ 3 Fri Jun 28 15:56:17 COT 2001
_SUBDGSUUHS suggestion menu far e atfribute suggestion type creation |smaner1vpe | @ O3 Tue Jun 18 15:43:26 COT 2001 GoTo
in context for sugnestion suggestion [© 3 Tue May 15 17:42:08 CDT 2001
attrs! relations P— TeliEER STEEESET : . il Clasaiar @ O3 Tue May 01 18:01:58 COT 2001
" clean up preprocessor hierarchic __ I || @[3 Tue Apr 10 17:49:02 COT 2001
I;rit:s;l::frelatmnl SRS ® 3 Tue Mar 27 17:48:27 G5T 2001
suggestion @ 3 Tue Mar 2017:35:54 CST 2001

© [Thu Mar 08 20:20:54 C5T 2001
sti | @[3 Tue Mar 06 17:59:19 CST 2004

© [Tue Feb 27 18:01:09 CET 2001
RML Output based
onvisual layout har

©- [Tue Feb 20 17:58:17 CST 2001
spz

Clean Up

@ [Tue Feh 08 17:53:35 C5T 2001
© [Tue Jan 30 17.32:28 C5T 2001
@ [Tue Jan 23 17:38:44 C5T 2001

plavback of collection or
object's histary

saving view preferences dewidgetization
for objectsiles

wisual types

application of ‘

©- [Tue Dec 12 17:35.26 C5T 2000

annotations of
@ 3 Tue Mov 28 17:48:58 CST 2000

history

logarithmic dis
history hash n

©- [Tue Mov 21 17:50:42 CST 2000

| auto scrolling ‘

Recurring tasks

read-only datafiles ‘ more complete export cutcopypaste in texd editing of history
‘ Completed .

® =3 Thu Mov 16 17:36:38 CST 2000
© 29 Tue Mov 07 17:44:41 CST 2000
® =3 Thu Mov 02 17:58:50 CST 2000
© 29 Tue Oct 17 17:37:50 COT 2000
© =3 Tue Oct 10 18:06:33 COT 2000
© 9 Tue Sep 26 17:34:58 CDT 2000
© =5 Tue Gep 19 17:40:17 COT 2000
© 29 Tue Sep 05 17:28:08 CDT 2000

@ [Thu Aug 31 18:23:27 COT 2000 |=| &

Figure 4. System features placed in priority from left to right and classified among

different themes from top to bottom.

have not performed any comparison, it seems less likely
that such good-natured banter and competition would
occur using a traditional project management tool to track
progress. The implicit nature of the visual representation
makes these judgments less threatening.

Besides promoting a common understanding of tasks
and progress, the workspaces act as a community memory
of project activity. When an annual report is due, going
back through the history helps identify activities to report.
Seeing the edits replayed triggers memories of not just
what was recorded but more general meeting discussions
that occurred. Another use of the history has been to
determine when particular ideas or tasks were introduced
into the project. Thus the workspace and its history act as a
record of the intellectual development of the projects.

4. Discussion

To determine how our experiences with the use of
spatial hypertext for project management can inform its
potential for use in other software development contexts,
we must first understand the similarities and differences in
these contexts. Large research software projects are
characterized by their continual exploration of a design

space. This exploration is driven by the interests of the
members of the project, the availability of funding, the
research methods, and the venues for reporting results.

A successful project is one that generates publishable
results, which often includes developing software
prototypes that can be studied in use. A really successful
project uncovers new issues that cause the project to
continue indefinitely.

While this may seem very different from commercial
software development, there are a number of similarities.
The continual integration of design and development can
be found in many iterative development methods. Also,
most software developed that is successful continues to
evolve for years after the initial release. No one believes
the current version of MS Word will be the last. Thus,
potential for indefinite future development is also of value
for commercial software. Many of the differences between
commercial and research software seem to be in the
required level of stability, features, support, and scale.

The primary advantage to using spatial hypertext is its
permissive nature. The visual representation allows
expression of characteristics of the task as desired.
Schemas do not have to be changed when new it is
determined that new attributes of tasks need to be

considered. Also, the informal nature of the representation
removes the need to have separate tools for recording
design discussions and managing the software
development.

The informal nature means that this would not work in
environments where there is the need to automatically
generate reports on the status of projects. Also, while there
can be an indefinite number of objects in a spatial
hypertext, limitations of displays pose practical problems
for working with more than a few hundred tasks in one
space. Thus, spatial hypertext seems well suited to
relatively small software development activities that
require, or would benefit from, flexibility.

Looking to the future, spatial hypertext could better
support our own development in a couple ways. The most
obvious direction is connecting the visual workspace with
structured or semi-structured data used by other tools.
Integrating VITE’s ability for visual changes to objects in
the workspace to be reflected as semantic changes to
objects in an underlying database would allow integration
with other software development and project management
tools.

5. Acknowledgements

This work was supported in part by the National Science
Foundation under Grant Number 1IS-9734167.

6. References

[1] Hayashi, K., Nomura, T., Hazama, T., Takeoka, M.,
Hashimoto, S., and Gudmundson, S. Temporally-
threaded Workspace: A Model for Providing Activity-
based Perspectives on Document Spaces, Proceedings
of ACM Hypertext ‘98 Conference, 1998, pp. 87-96.

[2] Hsieh, H. and Shipman, F. VITE: A Visual Interface
Supporting the Direct Manipulation of Structured Data

Using Two-Way Mappings, Proceedings of ACM
Conference on Intelligent User Interfaces 2000, 2000,
pp. 141-148.

[3] Hsieh, H. and Shipman, F. Manipulating Structured
Information in a Visual Workspace, to appear in
Proceedings of ACM Conference on User Interface
Software and Technology 2002, 2002.

[4] Marshall C.C., and Shipman, F.M. 1995. Spatial
Hypertext: Designing for Change. Communications of
the ACM, 38, 8 (August 1995), 88-97.

[5] Reeves, B. 1993. Supporting Collaborative Design by
Embedded Communication and History in Design
Artifacts. Ph.D. Dissertation, Department of Computer
Science, University of Colorado.

[6] Shipman F. and Hsieh, H. “Navigable History: A
Reader’s View of Writer’s Time”, New Review of
Hypermedia and Multimedia, Vol. 6 (2000), pp. 147-
167.

[7] Shipman, F., Hsich, H., Airhart, R., Maloor, P.,
Moore, J.M., Shah, D. Emergent Structure in Analytic
Workspaces: Design and Use of the Visual Knowledge
Builder. Human-Computer Interaction: INTERACT
2001, 2001, pp. 132-139.

[8] Shipman, F., Hsieh, H., Airhart, R., Maloor, P., and
Moore, J.M. The Visual Knowledge Builder: A
Second Generation Spatial Hypertext, Proceedings of
the ACM Conference on Hypertext, 2001, pp. 113-
122.

[9] Shipman, F.M., Marshall, C.C., and Moran, T.P.
1995. Finding and Using Implicit Structure in Human-
Organized Spatial Layouts of Information. In
Proceeding of the ACM Conference on Human
Factors in Computing Systems (CHI ’95), ACM, New
York, 346-353.

[10]Shipman, F., Moore, J.M., Maloor, P., Hsich, H., and
Akkapeddi, R. Semantics Happen: Knowledge
Building in Spatial Hypertext, Proceedings of the
ACM Conference on Hypertext, 2002, pp. 25-34.

The TOBIAStest generator and its adaptation to some ASE challenges
Position paper for the ASE Irvine Workshop

Y. Ledru
LaboratoireLogiciels SysemesRéseaux/IMAS
BP 72, F-38402Saint-Martin-d’'HeresCEDEX, FRANCE
Yves.Ledru@imag.fr

Abstract

In the pastdecade a scientificcommunityhasemepged
around the notion of “A utomatedSoftwae Engineering”.
This communityhas madeseveral advancesn two kinds
of challenges: the compl«ity of processingsoftwae engi-
neeringinformation,andthedifficultyto captureknowledg
aboutsoftwae. Thispositionpaperfirstrecallsthesechal-
lenges. It thendescribeshow thesechallengesinfluenced
thedesignof the TOBIAStestgenemtiontool.

1 Challenges of ASE research

AutomatedSoftware Engineeringtries to develop soft-
ware tools that help in the software developmentactivi-
ties. Suchtools startfrom digital information andtry to
produceotherdigital informationfor the softwareengineer
Most of thetime, this digital informationis a structuredor
a formal document. Structuredor formal documentsn-
clude: sourcecode, tests, formal specificationsbut also
semi-formalspecificationge.g. UML diagrams)or struc-
tureddocumentge.g. XML documents).At longerterm,
researchwork on naturallanguagerecognition(both spo-
kenandwritten) may increasehe spectrunof potentialin-
putdocuments.

formal or
1 structured
document

formal or [\ software
structured engineering
document tool

Figure 1. Structure of an ASE tool

Thefirst challengdacedby ASE tool designerss to de-
sign efficient and powerful tools. This is not a trivial task,
andit is confrontedto fundamentaproblems.

e The compleity of the input documents:real-life ap-
plicationsusuallyinvolve thousand®r millions of ar
tifacts (lines of code, diagramselements,...). This

compleity is inheritedby the toolsthatprocesshese
artifacts,andit requiresoptimisationsevenin the case
of linearalgorithms.

e Many algorithmsin this field have a non-linearcom-
plexity. They mustfacethechallengeof combinatorial
explosion(e.g.in model-checkindechniques).

e In mary other cases,the input documentsuse lan-
guageswvhoseexpressvenessnmakesprocessingctiv-
ities undecidablge.g. theoremproving on first order
predicatdogic).

Thesethree fundamentalproblemsare at the heart of
ASE research,and significantadvanceshave beenmade
in eachof thesefields. One of the main results of the
ASE communitywasthe identificationof domainspecific
knowledgewhich helpsfacethesecompleity and decid-
ability problems.By accumulatindknowledgeaboutaclass
of problemsiit is possibleto designdomainspecifictools,
or tools which usea domainknowledgebase. Suchtools
exploit the domaininformationto narrown their searchfor
solutionsandcorvergemorerapidly.

This introducesa secondchallenge: how do you cap-
turedomainknowledgeandotherrelevantinformation. Al-
thoughmucheffort hasbeendonein orderto educatesoft-
ware engineersto the virtues of specificationand docu-
mentation,mary software developmentactivities still cor
respondto CMM level 1. Approacheso software engi-
neeringlike ExtremeProgrammingeven try to reducethe
productionof documentgo a minimum, taking for granted
that software engineersonly like to write code! Also the
widespreadiseof computettechnologyhasturnedmillions
of peopleinto amateursoftware engineersyith poor edu-
cationin softwaredevelopmentechniques.

Two kindsof answerdave beenproposedo this second
challenge.

e Thefirstansweiis to provide usefulandefficienttools.
It is importantthattools bring somebenefitsand are

applicableto real-sizesoftware. Benefitscan be of
two kinds: eitheranimprovementin productvity, or
a speed-upf the processpor improvementin quality.
If any of thesefactors(productvity, time, quality) is
a critical factorfor a compaly, it will motivateefforts
to adoptthe new technology The capabilitiesof soft-
ware engineerdo adaptthemselesandtheir process
to new technologyshouldnotbeunderestimatedSoft-
wareengineersare confrontedto a constantvolution
of targettechnologiegprogramminganguageshard-
wareandsoftwareplatforms).They have the ability to
learnnew specificationanguagesf they perceve the
inducedbenefits.

e Thesecondnswelisto designformalismsor toolsthat
areeasyto usefor the softwareengineer Much work
hasbeendonein trying to designgraphicaformalisms,
supportecby GUI tools. This approachwassuccess-
ful in several projects. For example,the AMPHION
project usesa graphicalrelationallanguageas input
thatwasusedwith succesdy expertsin astrophysics
to formalizetheir problems.

e Thethird answeis theintegrationof thetool in thede-
velopmentprocessMany novel approachearebased
on new actiities and new notations. They requirea
revolution in the way softwareis developed. In most
casesa compalty cannotafford sucha revolution be-
causdt notonly requiresto educatets engineershut
alsoto deeplyreomganisethe compaly itself or its pro-
cessegandhencdoosesomematurityduringatransi-
tion period).

Olviously, the costof integrating new techniqueswill
be comparedo the expectedbenefits. From there,several
approachesan be adoptedby ASE tool designers:some
will try to maximizethe benefitsof their tools, whatever be
thecost,otherswill developmoremodestoolswhich bring
lessbenefitsatalower cost.

Thesechallengesrenotnew andthey have alreadybeen
reportedin various studiesrelatedto ASE, software en-
gineeringor formal methods. The rest of this paperwill
presenthe TOBIAS tool* , aimedat thegeneratiorof large
testsuitesand will discusshow thesechallengesare taken
into accounty thetool.

2 TOBIAS

TOBIAS is a tool for the automaticgenerationof test
casedrom a giventestpattern.Writing testcasess a very
tediousandrepetitve task,especiallywhenwe needalarge
setof testcases. This is where TOBIAS helpsproducea

1TOBIAS hasbeendevelopedwithin the COTE projectof the french
nationalnetwork in softwaretechnology(RNTL).

Challenge 2:
produce documents

Capture
information

formal or k
structured
document

software
engineering
tool

Challengel:
process documents

formal or
structured
document

Figure 2. Challeng es of ASE research

large setof similar testcases.We have experimentedhat
mary testcasedeaturethesamesequencef operationgut
with differentparametewvalues[1]. Othersequencesay
alsodiffer by exchangingan operatiorwith a similarone.

TOBIAS allows the userto definea setof relevantval-
uesfor eachoperationparameteor to identify setsof sim-
ilar operationdnamed‘groups” in TOBIAS). Theseform
the basisfor the definition of test patterns(named“test
schemas'’in TOBIAS). A testschemais a boundedregu-
lar expressionover operationsand groups. Testschemas
arethenunfoldedby TOBIAS into alargesetof testcases.

We expectthat TOBIAS will helptestengineerggener
atemoretestscasesandin a moresystematiavay for about
thesameeffort than“manually” writtentestcasesGenerat-
ing moretestsmay increasehe confidencen thetestsuite.
Generatinghesemoresystematicallywill helpcover more
behaioursof the systemjncludingsituationshatcouldbe
overlooked or forgottenby the testengineer So we may
reasonablyxpectthatTOBIAS increaseshe chanceof de-
tectingerrors.

In arecentexperiment3], we generatec largetestsuite
(4320testcases)ynd comparedt to a manuallyproduced
testsuite(45 testcases)Our experimentshovedthat

e Thetestsuitegeneratedy TOBIAS discoversmoreer-
rors thanthe manualtestsuite.It alsoexercisedsome
known errorsin several different ways, making the
testsuitemore robust towardsevolutions of the spec-
ification.

e Writing TOBIAS testschemasequiresa similar effort
thanwriting thesmallmanualtestsuite.

2.1 Principlesof TOBIAS

T

/N

Capture
information

Class

Test schemas 5
signatures

TOBIAS

Test Data/
Test cases/
Test purposes

Figure 3. Basic view of TOBIAS

TOBIAS takestwo inputs(Fig. 3):

o the signaturesof the classef the applicationunder
test

e atestschema

and producessequencesf methodcalls which canbe
usedastestdata,testcaseqif anoracleis available)or test
purposesuchastheonesrequiredasinputof the TGV tool
[2].

For example,let us considera simpleclass‘IntegerSet”
with two methods:*add(v:int)” and“remove(v:int)”. Start-
ing from this signatureandthefollowing testschema:

add(x)"1..3;remove(y)"0..2

where
x : {0,1,2,3}
y : {0,1,2}

TOBIAS will generateall sequencesvhich featureone
to threecallsto “add” with values0 to 3, followed by zero
to two calls to “remove” with valuesO to 2. In total, this

schemageneratesl092 different sequenceg(4 + 4*4 +
4*4*4) * (1 + 3 + 3*3)). Fig. 4 shovs someof the gen-
eratedsequences.

1: add(0)

2: add(1)

3: add(2)

4: add(3)

5: add(0); add(0)

6: add(0); add(l); add(2); add(3)

7. add(3); add(2); add(l); add(0)

8: add(0); remove(0)

9: add(0); remove(0); remove(0)

10: add(1); remove(0)

11: add(0); add(l); add(2); add(3);
remove(0); remove(l); remove(2)

Figure 4. Some test cases generated by TO-
BIAS

They correspondo classicatestcasedik e addingor re-
moving severalelementsbut alsoaddingor removing twice
the sameelement,or trying to remove an absentelement.
Actually, in orderto turn the outputof TOBIAS into test
casesyou needanoraclewhichwill evaluatethe effectsof
methodcallsanddeliveraverdict.

The testschem&4 lines) specifiesthis large setof test
casesand TOBIAS helpsthe software testerto construct
this testsuiteat a lower costthanmanualproductionof the
testcases. This simple exampleshavs how testschemas
generatgestcasedhy iterating over parametenvaluesand
the numberof successie calls to the samemethod. TO-
BIAS also allows to iterateover a set of instancesof the
classor over a setof methods.

TOBIAS is atool thatamplifiesthe work of the testde-
signer Thetool is basedon a simpleidea: to exploit sim-
ilarities betweentest casesin orderto specify theseby a
generatie pattern.In the next sectionswe will seehow it
addressethechallenge®f ASE.

3 Tobiasand complexity

Unfoldinga TOBIAS testschemads notintrinsically dif-
ficult, but the outputis subjectto combinatorialexplosion:
thetool generatea largenumberof testcasesandit is pre-
ciselythepurposeof thetool. Having alargenumberof sys-
tematicallygeneratedest caseshelpsfinding more errors
becausét exercisedhecombinatoriacomplexity of theap-
plication. Still, thetestsuitemay not bearbitrarily large be-
causeits executionmay require untractableresourcedor
minor additionalbenefits. Therefore the challengeof TO-
BIAS usersis to producean optimal numberof testcases.

Tothisend,it is necessarjo seleciasubsebf thegenerated
testsuite.Two kindsof testcasesshouldbeeliminatedfrom
thetestsuite:

e redundantestcases:

e non-conformestcases.

For example,in Fig. 4, testcasesl,2,3and4 areredun-
dant,becauseahey correspondo adda singleelementand
theresultof the testshouldnot beinfluencedby the actual
valueof the parameterSimilarly, testcases and7 arealso
redundant. Testcases9 and 10 could correspondo non-
conformtestcasesdf the pre-conditionof remove requires
thatthe elementhatis removedis anelementof theset.

T

/\

Capture
information

Test schem%

TOBIAS

Additional
knowledge
(UML diagrams,
pre/post conditions,

)

Class
signatures

Test Data/
Test cases/
Test purposes

Figure 5. Providing more information to TO-
BIAS

In orderto detectredundang andnon-conformancead-
ditional informationmustbe providedto thetool (Fig. 5).
Thisinformationcantake two forms.

e SeveralspecificatiordocumentgUML diagramsstate
machines pre-/post-conditions,.) can be exploited
in orderto detectandeliminatenon-conforntestcases.
This processcan becomedifficult if thesespecifica-
tions are complex or written at a very high level of
abstraction. They may requirethe useof verification
techniquesvith theirusualcost. Still, if thetesterdoes
notneedo detectevery non-conforntestcase hemay
usesimplerinformation or lessexpensie algorithms

which will detectsomekinds of non-conformances.

For example, TOBIAS will soontake into accountthe
relationsof the UML classdiagramin orderto detect

testcaseshatfeaturenon-conforrcommunicatiorbe-
tweeninstances. This kind of verificationis quite
elementarybut may leadto the elimination of a sig-
nificant numberof non-conformtest cases. We are
alsoworking on the integration of TOBIAS with the
CASTING tool [4] whichtakesinto accountpre-/post-
conditionsanda statetransitiondiagramto detectnon-
conformanttestcases.Here,thetool involvesa more
complex computationusingconstrainiogic program-
mingtechniques.

e Thelanguagefor expressingtestschemasanbe ex-
tendedto allow the test engineerto provide a finer
descriptionof the testschemaandto expresstesthy-
pothesesFor example,in the IntegerSetclass,values
of integersarenot significant. This equivalencecanbe
provided asatesthypothesisandusedby TOBIAS to
avoid redundantestcases.Currently we are experi-
mentingan extensionof the languagethat allows the
testengineeto specifyconstrainton thevaluesof the
parametersisedin atestcase. For example,the user
canexpresghatthez; parameterarepairwisedistinct,
whichwould eliminatetestcaseb.

To summarizeahispoint, TOBIAS is exposedo thecom-
binatorialcomplexity of the generatedestsuite.This com-
plexity is intrinsic to the tool becauseve wanteda tool
that would systematicallytest combinationsof valuesand
methodcalls. Still, it hasto be controlled becausetoo
large testsuitesmay require untractableresourceswvithout
providing additionalbenefits.Thereforeseveraltechniques
are usedto generatemore pertinenttest cases,but these
techniguesequireadditionaldomaininformationaboutthe
testsor aboutthe application.As for mary ASE tools, mas-
tering the compleity requiresadditional domain knowl-
edge. In the next section,we will seehow this knowledge
is capturedn thecontext of TOBIAS.

4 Capturing knowledge for TOBIAS

Fig. 3 shavs that TOBIAS requirestwo kinds of inputs:
atestschemandsignature®f theclassesln mary applica-
tions, thesesignatureganbe extractedeitherfrom thecode
of theapplicationundertest,or from its UML specification.
The currentversionof TOBIAS is basedbnthe UML class
diagrambecausehe tool wasdevelopedin a projectwhere
theavailability of suchdocumentss takenfor granted.Very
soon,we planto allow thisextractionfrom Jasasourcecode
also(Fig. 6).

If signaturesareextractedfrom existing UML specifica-
tions or from Java sourcecode, TOBIAS can be usedby

2Actually, atestschemaallows to specifynot only the methodinvoked
but alsotheinstancewhich will activate the methodcall, andtheinstance
whichwill procesghecall.

UML Class\

Diagram
or

Java Program

Capture
information

Additional
knowledge extract
(UML diagrams, Test schemas

pre/post conditions,

)

/

Class
signatures

Test Data/
Test cases/
Test purposes

Figure 6. TOBIAS with additional knowledg e

simply providing atestschema.The exampleof Sect. 2.1
shaws that testschemasre expressedn a few lines. The
currentversionof TOBIAS alsoprovidesa graphicaluser
interfaceto help the userdefinea testschema.For exam-
ple,theinterfacepromptstheuserfor valuesof theparame-
ters,or for namesof theinstancesvhich will executethese
methods.It mustbe notedthatthe testschemaencourages
the userto provide specificinformation aboutthe applica-
tion undertest. For example,the choiceof valuesfor the
methodparameter$orcesthe userto analysewhich values
are of interest;the quality of the information provided by
theuserhasa directeffect on the quality of thetestsuite.
TOBIAS hasbeendesignedo allow a new userto start
usingthetool at low cost. Startingfrom an existing class
diagram theuseronly hasto provide afirst testschemaHe
will immediatelygeta first large sequencef methodcalls.
We expectthatthe userwill thentry to refinethis sequence
eitherby usingthe extensionsof the schemdanguagde.g.
constraints)pr by providing more informationto the tool
aboutconformancedssues. This conformancenformation
is actuallya specificatiorof the applicationundertest. The
plannedextensionsof the tool will try to exploit existing
UML diagramsof theapplicationundertest(classdiagram,
statetransitiondiagram,OCL pre/post-conditions)if such
specificationglon't exist, we hopethatthe benefitsof pro-
ducing more pertinentand conformanttest suiteswill en-
couragethe softwareengineetto specifypartsof the appli-
cation. Again, we plan that the tool will be ableto bring
small but usefulresultsfrom simple elementsof the speci-
fication (e.g. therelationsin the classdiagram),and more

preciseandcompleteresultsfrom detailedspecifications.

Anotherway to encouragéheuserto provide suchspec-
ificationsis to integrateTOBIAS with othertestgeneration
tools which are basedon the samekinds of diagrams. In
the COTE project, TOBIAS will be combinedwith UM-
LAUT/TGV andCASTING,whichbothexploit elementof
UML specifications.Specificationspreferablyexecutable
onescanalsobe usedasa basisfor thetestoracle,in order
to turn sequencesf methodcallsinto realtestcases.

In summaryour approachs to provide thefirst benefits
atthesinglecostof expressingestschemasilt exploitsthe
availability of severaldocumentgsourcecode,UML spec-
ifications), and henceshould be easierto integratein the
compalry process.Then,it encouragethe evolution of the
processeby deliveringnew benefitfor additionalelements
of specification.

5 Conclusion

This paperhasshovn how the TOBIAS testgenerator
triesto facetwo of the major challengeof eachASE tool:
compl«ity and information acquisition. Our approachis
to startwith simplesolutionsthatfit into standardsoftware
developmentprocesses.Then we intend to graduallyin-
corporatemore refined processingoasedon more precise
information.

Acknowledgments

TOBIAS is theresultof joint effortswith Lydie duBous-
quet, Pierre Bontron, Olivier Maury and several students
of UJF. I'd alsolike to thankour colleaguesf the COTE
project,in particularour colleague$rom Gemplusvho pro-
vided motivationfor developingthetool.

References

[1] L. duBousquetH. Martin, andJ.-M.Ezquel. Conformance
testing from UML specifications- experiencereport. In
UML2001Wbrkshopon Practical UML-BasedRigorousDe-
velopmeniMethods Toronto,2001.

[2] T. JeronandP. Morel. TestGeneratiorDerivedfrom Model-
checking. In ComputerAided Verification (CA/'99). LNCS
1633,Springer 1999.

[3] O. Maury, Y. Ledru, P. Bontron,and L. du Bousquet. Us-
ing testhypotheseso build a UML modelof object-oriented
smartcardapplicationsIn Int. Conf on Softwae andSystems
Engineeringandtheir Applications(ICSSEA) Paris,1999.

[4] L.VanAertryck, M. BervenisteandD. Le Métayer.Casting:
A formally basedsoftwaretestgeneratiormethod.In Thelst
Int. Conf onFormal EngineeringMethods)EEE,ICFEM’97,
Hiroshima,1997.

Sleeping at Night: Perpetual Monitoring of Environmental Assumptions

Stephen F ickas', Max Skorodinskyl, Martin Feather”

1Computer Science Department, University of Oregon
2Jet Propulsion Lab, Pasadena

1. Introduction

We are interested in failure. In particular, we are interested in failures that are discovered at
analysis time, but are left to simmer. Figure 1 places our work in context.

| Analyzer
g 4

Qtodel>

dernething
Figure 1: Reactions to failure

Given a violation, the traditional approach is to change the model to remove the cause of the
violation (the arrow leading from violation to model). In essence, “design out” the problem
[Garcez et al, 2001]. A less traditional, but still interesting approach is to change the property
(the arrow leading from violation to property) so that the violation is eliminated [van
Lamsweerde&Letier, 2000; Durney, 1993]. We are interested in a third approach that is quite
untraditional in the formal analysis literature but one that seems quite common. The “approach”
is to acknowledge that a violation is possible but is simply not going to be handled by changes to
the model or property. There are various reasons that might be given for taking this approach, but
they all lead to a cost/benefit argument: the cost of trying to design them out or lower our goals
is not worth the benefit of getting rid of them.

This paper takes up one aspect of the do-nothing approach: the assumptions underlying
cost/benefit arguments. In particular, we are interested in arguments based on the likelihood of
the environment acting in certain ways. (The Model of figure 1 is actually a representation of the
artifact under design as well as its environment. In our project, we use closed models that include
both.) Our experience is that domain experts, participating in the analysis process of figure 1,
often make statements about the expected behavior of the deployment environment. While
domain experts are domain experts, it can be difficult to predict either the initial environment
where the artifact will run, or a changing environment looking out over time. We will argue in
the remainder of the paper that we need to carry analysis arguments to runtime, leading to what
we call “runtime requirements engineering”. We will introduce an example and then discuss
future work.

2. Example: The Fault Protection Engine

Our group took on the task of analyzing basic liveness and safety properties for a one
component of the operating system for a spacecraft. The component is called the Fault Protection
Engine or FPE for short. The FPE component is interesting in its own right: it attempts to
diagnose and treat runtime faults that occur during the mission. In some ways, it is a runtime
instantiation of figure 1! However, it is not the details of the FPE that we will focus on, but our
attempts to analyze its behavior to discover problems.

Our group was given a state chart representation of the FPE component. This representation
was developed by domain experts at JPL. We were asked to use model checking to verify that
the FPE component, as represented by the state charts, met simple distributed system properties
such as non-termination, non-starvation, deadlock free, etc. A large part of our effort was getting
to a Promela model (we chose to use Spin as our model checker) that actually gave useful results.
We have documented this effort in a separate paper [Feather et al, 2001]. Where we take up here
is at the final version of our model, one capable of finding violations in reasonable time. To
provide some context, we will use a piece of the original state chart diagram as illustration (see
figure 2).

Physical Sensors (env) ‘ Ground control
State Change (enV)

™ Notify/Fault.Activate ‘

off on j
b /c2/Fault.Deactivate Direct Command
) U

Run Response

Cleanup/MonitorReset

Figure 2: the basic detect/repair cycle

There are two environmental pieces in the figure, the physical sensors on the spacecraft
and the human staff (ground control). Both provide external events to the FPE component itself.
The general operation is for faults to be detected and then queued up for processing. Once a fault
has had a repair routine run, it is cleared. Ground control can ask that a repair routine be run
irrespective of any actual faults detected on the spacecraft.

Our modeling approach is to start with a wildly under constrained environment and
gradually refine it as called for. This same approach proved useful in our earlier work in
implementing highly non-deterministic specifications [Fickas, 1985; London&Feather 1986].
Using this approach, both physical sensors and ground control were allowed to “run open”: on
every cycle, they had the opportunity to produce an event for the FPE component. Before
describing violations, we need to describe a property we were interested in proving. In English,
we wished to show that for every fault detected, a response was eventually run. We are going to
use a tool that we have found valuable in stating properties such as this, the Timeline editor tool
[Smith et al, 2001]. Figure 3a shows the GUI for the tool with the specification of our property.
Figure 3b shows the Buchi automata that the tool produces. Figure 3c shows the Promela/Spin
never-claim that is actually inserted into our model.

#define pl sympton
#define p2 response

KEY #define p3 Isympton

P symptam
B2 response
pd Isymptom

o
pl -> goto acceptsi
p3

od;
acceptsl
do
P2 -> goto 52
Ip2

od;
52 0 *full compliance if reached*/

Tymptom i
See Text Dismiss &I
Figure 3a: GUI spec 3b: Buchi automata 3c: never-claim

When we inserted the never-claim into our FPE model with the unconstrained
environment, we turned up the following violation: the input buffer to the repair component
could be overrun with repair requests. In other words, the environment could flood the FPE with
enough faults so that some were lost because of finite buffer size. Figure 4 is a representation of
the states leading towards a full buffer, and hence failure: once a buffer is full, new messages are
lost.

New messages
lost, hence no
response.

Figure 4: progression towards buffer overflow

When we presented this violation to domain experts, they had the following comments:
1) There are safeguards built-in to the hardware sensors that prevent them from flipping
back and forth too quickly spurious signals).
2) If there actually are enough real faults to fill the buffer, there are bigger problems than
buffer overflow.
3) Our experience on past missions says that this is not a problem worrying about.
Given these comments, we modified the environment model. In essence, we defined
environmental assumptions that said the environment was not allowed to fill the buffer. With
these assumptions in place, one violation was eliminated. At this point, a new violation arose:
ground control could flood the input buffer with requests. We dutifully presented this new
violation to domain experts. The response was as follows:
1) Ground control staff are well-trained and would not flood the spacecraft with requests.
2) Experience says that ground control rarely are required to send requests.
However, after further discussion, the possibility of a “flight rule” was put forth. Flight rules are
constraints on the actions humans can take when interacting with the spacecraft. In our biased
view, they fall out of composite system design [Fickas&Helm, 1992]. All components in a
composite system must control their behavior to reach a larger goal. Flight rules are a
manifestation of control of the human agents in the system. It is important to note that flight rules
are currently not checked by machine at runtime: ground staff is expected to follow them in the

form of an operations manual. A paraphrase of the flight rule proposed was “do not, through
combination of onboard requests and ground control requests, exceed the request-buffer size”.

To summarize this first example, several violations were found of the requirement that all
requests be acted upon. The two we have presented were both explained away, i.e., the do-
nothing approach was chosen. The exception was the possibility of adding a flight rule to the
operations manual of ground control. The question is whether we can sleep at night after we are
finished with the analysis phase. Will our environment assumptions all hold once the spacecraft
is launched and on mission?

3. What makes us sleepless

There are two concerns we have after completing the FP engine case study. First, did we turn
up all the environmental assumptions that are being made? In essence, did we uncover all the
ways the system can fail at the hands of the environment? We are feeling skeptical about this
given the lack of elicitation methodology for building environment models in Spin. As
previously noted, we did follow an informal approach documented in [London&Feather, 1982],
one that starts with a completely unconstrained environment and gradually adds constraints as
needed. However, we used mostly ad hoc methods to decide what to model and what to not
model as we interacted with the domain experts. Second, some of the do-nothing failures that we
did turn up during modeling seemed to warrant some further validation at runtime. A brief scan
of the failure assessment literature shows a non-trivial number of system failures due to
erroneous engineering assumptions about the runtime environment. We do not believe you can
remove the need for assumptions — no engineered artifact would ever get built if it had to handle
all worst case scenarios thrown at it by its environment. However, it seems that once these
assumptions are explicated (by a good elicitation method!), we can do more than do-nothing.

4. Looking to Cryptography for Assumption Elicitation

In our FP engine case study, we used a seat-of-the-pants approach to working with domain
experts. In particular, we wrestled with mundane and uninteresting modeling issues at the same
time we pursued the main goal of accurately representing the composite system. One might
argue that the tool we chose, Spin, was the problem. However, our experience in our year-long
modeling seminar is that all modeling tools have their quirks and none can said to be easy to use
when starting from scratch. The question is do we have to start from scratch? We look with
interest to the more general software engineering area where notions of patterns and frameworks
are proposed as building blocks. We conjecture that the same ideas, if not the same content, can
find a home in formal modeling efforts. In this section, we will provide what we believe are
starting points for modeling frameworks, and in particular, frameworks that focus on the
environment model of a composite system.

We suggest that we can take a general modeling tool, Spin, and develop the engineering
practice around it that will give us what we want. What do we want? We want a method or
framework that focuses on the behavior of the environment in a composite system. For the sake
of discussion, we will use an existing modeling methodology from the cryptographic-protocol
world, strand spaces. We propose strand spaces for at least three reasons: (1) It is environment-
centric. It puts the environmental component of a composite system first and foremost. In fact, its
whole raison d'étre is to explore means that the environment, acting badly, can cause a system to

fail. (2) It is tool independent. It really is a methodology or way of thinking about a problem. (3)
There is some evidence that it can be coupled with Spin (discussed in next section). We will next
introduce the strand space concept and discuss its applicability to the larger problem of
environmental monitoring. At the end of the section, we will discuss similar environment-centric
frameworks and how they might fit into a modeler’s toolbox.

Strand Space as a Framework

The strand space is a framework for modeling security protocols [Fabrega et al, 1999].
The strand space modeling technique provides a means for succinctly specifying the actions of
legitimate protocol participants. Additionally, the framework provides an explicit model of a
protocol penetrator that is independent of a specific protocol. In other words, the strand space
captures a means to reason about, as well as model, a malicious entity which exists/acts in the
same system as the legitimate entities. Furthermore, the technique establishes a bound on the
capabilities of the malicious entity, which allow for rigorous proofs of security properties of a
specific protocol based on the bounded capabilities of the penetrator.

Although methods for proofs of protocol properties such as authentication and secrecy
are clearly presented by the framework’s designers, a major limitation of this technique is that
the models as well as the proofs must be produced by hand. There is, however, at least one
documented study that reports success with using the Spin automated model checker to verifying
a security protocol, where the protocol has been represented as a model built with techniques
nearly identical to those of the strand space mode [Maggi&Sisto, 2002]. The following
introduction to the strand space modeling and verification technique will combine an explanation
of concepts central to strand space with a demonstration of how these concepts can be translated
into a model built in Promela. A famous security protocol, the Needham-Schroeder-Lowe
Public-Key Authentication Protocol, will be used to illustrate the main ideas/concepts.

A central concept to the Strand Space model is a strand, which is a set of nodes, where
each node captures an action (specified by a protocol) valid for the entity to which the strand
corresponds. A node is an element of the set N (all nodes in the model), such that every node
neN belongs to a unique strand and each node in a strand is indexed. A predecessor relation is
defined on the nodes in the same strand. This is done, by connecting two nodes, one of which
precedes the other, with a special symbol (=). If n;, n, are nodes, n; = n, means n;, n, occur
on the same strand and index (n;) = index (ny)—-1. In addition to the immediate causal
predecessor relation, a causal link relation is defined on nodes occurring in different strands. If
n;, ny are nodes, n; — ny implies that n; sent a message which was received by n,. Each node
contains a term, which corresponds to a message either being sent or received. A term is said to
originate on a node if that term is preceded by the symbol + (plus) which also corresponds to a
message being sent whereas a term, preceded by the symbol — (minus), corresponds to a message
being received. A term uniquely originates on a node if it originates on a unique node neN. In
the domain of cryptographic protocols, a uniquely originating term has the significance of
representing a nonce or a session key.

The designers of strand space focus on two security properties in their work: agreement
and secrecy. In both cases the authors use the concept of a uniquely originating term and causal
relations between nodes to establish proofs of the two properties. For example, the agreement
property is defined in terms of participants committing to a run of a protocol using a data item on
which they agree. This property is verified by checking that a bundle that contains a strand

which receives a data item x has a unique strand which sends x. The Needham-Schroeder-Lowe
protocol in conventional specification illustrates some of the strand space concepts presented
thus far:

1. A—B: {N,A}x
2. B> A: {N,N,Bx,
3. A—>B: {(Np}k

The goal of this protocol is that the legitimate participants A and B gain possession of N, and N,
and associate these values with each other. No other party should have access to these values.
The Needham-Schroeder-Lowe protocol in Strand Space:

strand s’ strand s”
a node:
s, 1) ", 1)
a sent message: a received message:
[+{NaA}ks] > [—{NaA}xs
(s', 2) (s",2)

[—{Na Ny Bk,] [+{Na Ny B}k, |

! !

(s, 3) (s", 3)
[+{Nb}xs] > [—{Nb}Ks]

A

Thus far, only legitimate protocol participants have been illustrated. In terms of modeling these
in Promela, the legitimate entities can be expressed as processes and the actions allowed by them
by the protocol as atomic actions. This is described in detail in [Maggi&Sisto, 1999].

Adding the Environment

The most powerful concept developed in strand space is that of the model of a penetrator,
or malicious entity. Using well-accepted notions of a security protocol bad guy, the authors
present a bounded model of a penetrator, which embodies a finite set of capabilities. For
example, the following are a few of the capabilities of the penetrator taken from [Fabrega et al,
1999]:

M[a]: send message a given that a is a term initially known to the penetrator, [+a].
F[a]: receive message a, [-a].

T[a]: tee, [-a, +a, +a].

V|[a, b]: concatenation, [-a, -b, +ab].

R[ab]: separation into parts, [-ab, +a, +b].

The verification of a property is done with respect to these capabilities and any data of
which the penetrator is in possession. A notion of an infiltrated strand space is defined, which
consists of strands that represent legitimate protocol participants as well as the penetrator strands,
where each strand corresponds to one possible penetrator action. According to the authors of
strand space, the penetrator model can be easily expanded to include other capabilities without
necessitating any other modifications to the framework.

The model of the Needham-Schroeder-Lowe protocol presented in [Maggi&Sisto, 2002]
very closely resembles that of the infiltrated strand space. As mentioned previously, the
legitimate participants of the protocol are able to take atomic actions prescribed to them by the
specification of the protocol. The penetrator is injected into the space by connecting each
legitimate participant to the penetrator with a Promela channel. Thus, the penetrator is the first
recipient of any protocol dictated action. Furthermore, once the penetrator receives a message
destined to a legitimate participant it forwards the message to the intended recipient. Most
importantly, the penetrator is able to commit any of the actions in its set of capabilities at this
point. Thus, the infiltrated space is an extremely compact way to model the influence of
malicious or otherwise interfering entities with the actions of legitimate ones. The following is
an illustration of the infiltrated space in a Spin model.

Participant A: Participant B :

a process with a a process with a

set of atomic set of atomic

actions allowed actions allowed

by the protocol. by the protocol.
Communication

channels:
Penetrator:

- forwards messages between
legitimate participants.

- carries out actions from the set
of malicious capabilities.

Is There a Framework Somewhere Here?

We believe the answer is yes, there is a potential framework for eliciting failures and
environmental assumptions. Our belief rests on (1) the ability to provide different penetrator
actions for different domains, and (2) the ability of the Promela architecture above to contain the
state-space explosion. Neither of these beliefs has been satisfactorily evaluated by us: they

remain conjectures. (We have recently used the Promela architecture above to model another
crypto protocol, but have not attempted to use it on a non-crypto problem.)

In summary, the general research questions around the strand space approach to assumption
elicitation are as follows:

a. Can the method be refocused, or at least focused more broadly, on embedded systems.
Its general model of actors/agents of the artifact/system working under deterministic
rules is a fit with applications like the FP engine. More generally, one does not often
want non-determinism in designed artifacts. The strand space focus is on the
environment: how can the environment, viewed as an agent, screw up the system. Can
this all be translated into a methodology that allows modeler and domain expert to
explore environmental assumptions?

b. Assuming that the strand space method is effective for embedded systems, what tool
support can we give to it? Given that we propose to use Spin as our base modeling tool,
what software engineering tools can we provide for deriving environmental
assumptions and dependability metrics from the strand space model? Do patterns or
frameworks make sense in Spin in the same way they do in more general programming
languages? More directly, can we develop a strand space framework for Spin, i.e., add
a software engineering layer on top of the Spin modeling tool?

Beyond Strand Space: A Framework Toolkit

Looking a bit more closely at the strand space concept, it is based on exchange protocols.
It centers on a non-cooperating environment thrown in with a set of correctly functioning system
components. This covers some of the problems we turned up in our FP engine study. However,
there are clearly other ways that a composite system can be viewed. For instance, the (human)
ground control component is assumed to act correctly. But if this component acts incorrectly it
can have disastrous results. A framework that focuses more closely on this problem is the non-
repudiation protocols that deal with a trusted component acting badly. Pascoe describes the
APPROVE framework for modeling these types of problems [Pascoe, 2001]. Still other problems
crop up when dealing with black-box components not under project control. Recent work on
Interface Modeling [Alfaro&Henzinger, 2001] centers on the types of assumptions one must
make about such components for the system to avoid failure. In our FP engine study, domain
experts had a tendency to treat sensor hardware in this way. Assumptions were made about the
way it would behave as seen through its interface.

It is tempting to propose an effort that unifies all of these different methods into a single
framework. However, we propose to follow a different path: different frameworks for different
pieces of a composite system. In essence, we are bowing to the fact that there is not one
“environment” that needs to be reckoned with, but a set of relationships between system
components and non-system components. It is even greyer than this. For instance, the domain
experts do not view ground control as part of the environment. And in some ways they are right:
there is a degree of control over it. However, its behavior remains only plausible, not guaranteed.
One can view it as the “human user” of the system. Other components of the environment are
engineered but come as black-box entities. Yet other components of the environment reflect the
physical aspects of deep space missions. Instead of lumping these together, we propose to build a
collection of frameworks to match known system-environment relationships. The goal is to

supply a modeler with a framework that teases out the environment model, and in particular, the
environmental assumptions that exist with different environment components, e.g., with humans
in the loop, with black-box components, with white-box trusted components, with the physical
environment. In a larger sense, this can be viewed as falling under the domain-specific rubric:
power by constraint. Build methods and tools that leverage knowledge of constrained aspects of
a system.

5. Sleeping Better: Monitoring Assumptions

We would like to consider a compromise to the do-nothing approach: go ahead and make
assumptions at analysis time, but record them and carry them to runtime for monitoring. To give
a bit more context, we are interested in knowing more than simply fail/no-fail information about
an assumption (e.g., more than what would be given by an assert statement in the deployed
code). In particular, we are interested in observing the states leading up to assumption failure,
and using that information in various ways:

e At the least, we might be given a warning that failure is certain but some time remains to
“man the life boats”. The Mocha group calls these doomed states: the system will fail
under all future events but has not reached the failure state yet [Alur et al, 1998].

e Better, we might be able to provide some control over the environment. For instance,
both our examples had human agents as part of the larger composite system. There is
potential to influence their actions (e.g., actual monitoring of flight rules in the FPE
example).

e Best, we might be able to change the artifact (the components under our control) to head
off failure without relying on help from the environment. In some systems, this means an
artifact moving to a fail-safe mode until a danger has passed (e.g., the FPE example).

We have done some experimentation with assumption monitoring, and that work is described in
detail in [Fickas et al, 2002]. Here we will briefly outline our approach and describe what we see
as future research directions.

Step 1. We capture environmental assumptions in the Timeline editor tool (see figure 3a). The
Timeline editor provides a means of explicitly stating assumptions made about the environment
of a required system property.

Step 2. We take the output of the editor, a Spin never-claim (see figure 3b,c), and use it as the
specification of a runtime monitor.

Step 3. We translate the never-claim to an Emu event tree. Emu is a tool we have developed for
monitoring runtime events (www.emu-project.org). Our translator converts the state-machine
represented by the never-claim into the equivalent Emu monitor represented by an event tree.
Step 4. The Emu monitor waits for a triggering event/action, and then provides intermediate
information about the current state of the tree (state machine).

To date we have been able to build visual monitors of Emu event trees. These have proven useful
to system staff monitoring the accuracy of environmental assumptions. We have yet to connect a
monitor with an adaptation mechanism.

Open Issues of Monitoring

We find that tools like the Timeline editor are sorely needed in the formal methods area.
They provide an abstract view of scenarios that is at just the right level. And furthermore, we use
the tool both for analysis time verification and for the start of the path to runtime monitoring.
The problem is that tools of this ilk, ones designed for model checking, carry model checking
baggage. The output of the Timeline editor is meant to be integrated with a larger Promela
program. And this integration is based on the non-deterministic search space generated by Spin.
Further, the editor’s output (in reality, a Buchi automata) is based on Linear Temporal Logic
(LTL), which is founded on infinite time sequences. Both of these attributes of model checking,
non-determinism and infinite time, are knotty issues when moving to a deployed system. We are
not the first to notice this: other groups have wrestled with the use of finite traces to prove
properties stated in terms of infinite time. However, we are aware of no other work in the area of
assumption monitoring (as opposed to runtime verification) that has satisfactorily dealt with the
twin problems. Have we solved them with our mapping to Emu? No. We have taken a finesse
(actually two). First, we change all infinite behavior in a never-claim to be timed. Technically,
we turn a liveness issue into a safety issue. Second, we use a deterministic monitor. This will fail
to capture alternative paths through the never-claim. While both of these choices, translating to
timed and deterministic monitors, has been sufficient for the simple problems we have studied,
we would be surprised if they were enough for larger, more complex scenarios.

6. Summary

Our goal was to convince the reader that there is a portion of modeling that is under
supported, that of building an environmental model and eliciting environmental assumptions
along the way. There appear to be two hard problems: (1) finding a software engineering method
that helps with elicitation, and (2) once elicited, finding a means of runtime monitoring. We have
discussed two approaches that we believe hold promise.

References

Luca de Alfaro, Thomas A. Henzinger, Interface Theories for Component-based Design,
Proceedings of the First International Workshop on Embedded Software (EMSOFT '01), Lecture
Notes in Computer Science 2211, Springer-Verlag,

Rajeev Alur, Thomas A. Henzinger, F.Y.C. Mang, Shaz Qadeer, Sriram K. Rajamani, and
Serdar Tasiran. Mocha: Modularity in model checking. In Proceedings of the Tenth International
Conference on Computer-aided Verification (CAV 1998), Lecture Notes in Computer Science
1427, Springer-Verlag, 1998, pp. 521-525.

Durney, B., Requirements Transformations, PhD Thesis, Computer Science Department,
University of Oregon, 1993

F. Javier Thayer Fabrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security, 7(2/3):191--230, 1999

M.S. Feather, S. Fickas, A. Razermera Mamy, Model-Checking for Validation of a Fault
Protection System, Proceedings 6th IEEE International Symposium on High Assurance Systems
Engineering, Boca Raton, Florida, October 23-24 2001. IEEE Computer Society

http://www.eecs.berkeley.edu/~tah

Fickas, S., Automating the transformational development of software, In IEEE Transactions
on Software Engineering, Vol. 11, No. 11 Nov. 1985

Fickas, S., Helm, R., Automating the design of composite systems, /[EEE Transactions on
Software Engineering, June, 1992

Fickas, S., Beauchamp, T., Razermera Mamy, A., Monitoring Ephemeral Requirements,
Computer Science Tech Report 10-02, University of Oregon, May 2002 (www.emu-project.org)

A. S. d’Avila Garcez, A. Russo, B. Nuseibeh, and J. Kramer, An Analysis-Revision Cycle to
Evolve Requirements Specifications , Proceedings of 16th IEEE International Conference on
Automated Software Engineering (ASE-2001), pp.354-358, 26-29 November 2001, San Diego,
USA.

P.E. London & M.S. Feather, “Implementing specification freedoms”, Readings in Artificial
Intelligence and Software Engineering: 285-305, 1986, Morgan Kaufmann, 1986 [Originally
published in Science of Computer Programming (2): 1-131, 1982]

P. Maggi and R. Sisto, Using SPIN to verify security properties of cryptographic protocols,
Spin Workshop 02, July 2002

J. S. Pascoe, R. J. Loader and V. S. Sunderam, Working Towards The Agreement Problem
Protocol Verification Environment, 2001 Communicating Process Architectures (CPA 2001).

Smith, M., Holzman,G., Etreeami, K., Events and Constraints: A Graphical Editor for
Capturing Logical Requirements of Programs, International Symposium on Requirements
Engineering — REOI, Toronto, August 2001

van Lamsweerde, A., E. Letier , Handling Obstacles in Goal-Oriented Requirements
Engineering , IEEE Transactions on Software Engineering, Special Issue on Exception
Handling, Vol. 26 No. 10, October 2000, 978-1005.

http://mcs.open.ac.uk/ban25/papers/ase-2001.pdf
http://mcs.open.ac.uk/ban25/papers/ase-2001.pdf

	Henninger.pdf
	Design and Usability Patterns
	Formalizing a Community of Practice for Patterns
	Using the Semantic Web to Deliver Software Development Knowledge
	Using the Semantic Web as a Communication Medium for Communities of Practice

	Current Status and Future Work
	References

	Fickas.pdf
	Strand Space as a Framework
	Adding the Environment
	Beyond Strand Space: A Framework Toolkit

