

THE POTENTIAL FOR PERSONALIZATION IN WEB SEARCH

Overview

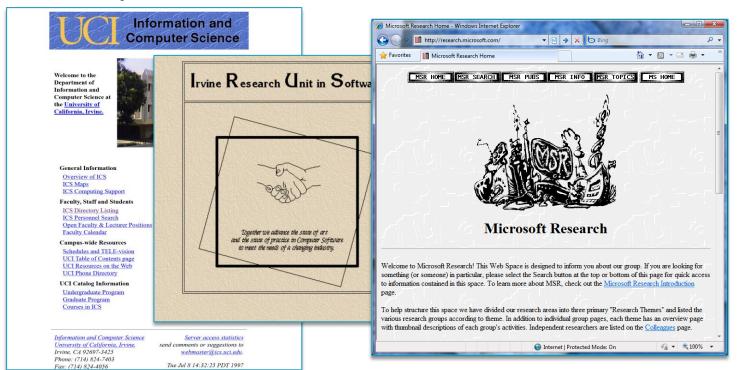
- Context in search
- "Potential for personalization" framework
- Examples
 - Personal navigation
 - Client-side personalization
 - Short- and long-term models
 - Personal crowds
- Challenges and new directions

20 Years Ago ... In Web Search

 NCSA Mosaic graphical browser 3 years old, and web search engines 2 years old

20 Years Ago ... In Web Search

- NCSA Mosaic graphical browser 3 years old, and web search engines 2 years old
 - Online presence ~1996



20 Years Ago ... In Web Search

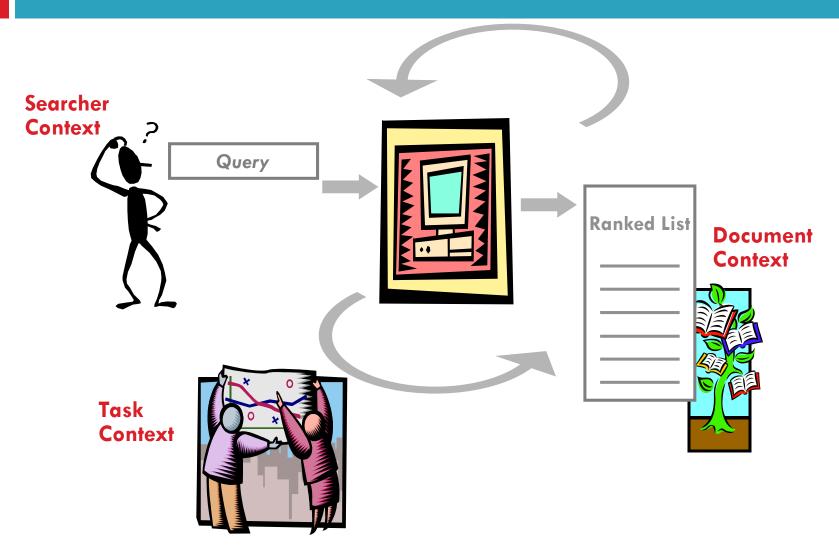
- NCSA Mosaic graphical browser 3 years old, and web search engines 2 years old
 - □ Online presence ~1996
- □ Size of the web
 - # web sites: 2.7k
- □ Size of Lycos search engine
 - # web pages in index: 54k
- Behavioral logs
 - # queries/day: 1.5k
 - Most search and logging client-side

Top 5% Sites

Today ... Search is Everywhere

- □ A billion web sites
- Trillions of pages indexed by search engines
- □ Billions of web searches and clicks per day
- □ Search is a core fabric of everyday life
 - Diversity of tasks and searchers
 - Pervasive (web, desktop, enterprise, apps, etc.)
- Understanding and supporting searchers more important now than ever before

Search in Context



Context Improves Query Understanding

Queries are difficult to interpret in isolation

□ Easier if we can model: who is asking, what they have done in the past, where they are, when it is, etc.

Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher) vs. (SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Reconstruction)

Context Improves Query Understanding

Queries are difficult to interpret in isolation

Easier if we can model: who is asking, what they have done in the past, where they are, when it is, etc.

Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher)
vs. (SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Reconstruction)
Previous actions: (SIGIR | information retrieval)

vs. (SIGIR | U.S. coalitional provisional authority)

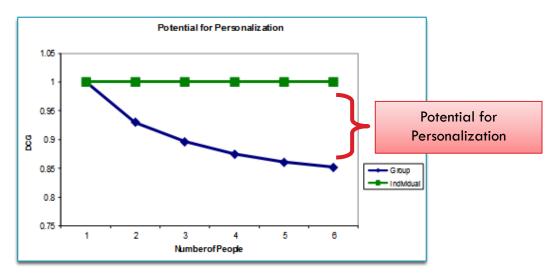
Location: (SIGIR | at SIGIR conference) vs. (SIGIR | in Washington DC)

Time: (SIGIR | Jan. submission) vs. (SIGIR | Aug. conference)

 Using a <u>single ranking</u> for everyone, in every context, at every point in time, <u>limits how well a search engine can do</u>

Potential For Personalization

- A single ranking for everyone limits search quality
- Quantify the variation in relevance for the same query across different individuals

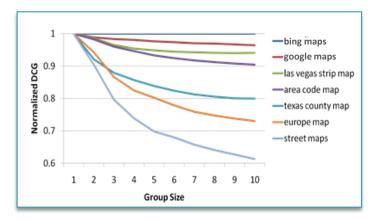


Potential For Personalization

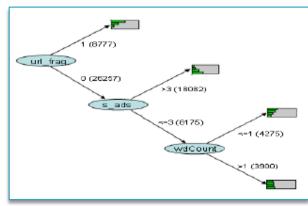
- A single ranking for everyone limits search quality
- Quantify the variation in relevance for the same query across different individuals
- Different ways to measure individual relevance
 - Explicit judgments from different people for the same query
 - Implicit judgments (search result clicks entropy, content analysis)
- Personalization can lead to large improvements
 - Study with explicit judgments
 - 46% improvements for core ranking
 - 70% improvements with personalization

Potential For Personalization

- Not all queries have high potential for personalization
 - E.g., facebook vs. sigir
 - E.g., * maps



Learn when to personalize



Potential for Personalization

- □ Query: UCI
- What is the "potential for personalization"?

- □ How can you tell different intents apart?
 - Contextual metadata
 - E.g., Location, Time, Device, etc.
 - Past behavior
 - Current session actions, Longer-term actions and preferences

User Models

- Constructing user models
 - Sources of evidence
 - Content: Queries, content of web pages, desktop index, etc.
 - Behavior: Visited web pages, explicit feedback, implicit feedback
 - Context: Location, time (of day/week/year), device, etc.
 - □ Time frames: Short-term, long-term
 - Who: Individual, group
- Using user models
 - Where resides: Client, server
 - How used: Ranking, query suggestions, presentation, etc.
 - When used: Always, sometimes, context learned

User Models

- Constructing user models
 - Sources of evidence
 - Content: Queries, content of web pages, desktop index, etc.
 - Behavior: Visited web pages, explicit feedback, implicit feedback
 - Context: Location, time (of day/week/year), device, etc.
 - □ Time frames: Short-term, long-term

PNav

Who: <u>Individual</u>, group

PSearch

- Using user models
 - Where resides: Client, server

Short/Long

- How used: Ranking, query support, presentation, etc.
- When used: <u>Always</u>, <u>sometimes</u>, <u>context learned</u>

Example 1: Personal Navigation

- Re-finding is common in Web search
 - □ 33% of queries are repeat queries
 - 39% of clicks are repeat clicks
- Many of these are navigational queries
 - E.g., facebook -> <u>www.facebook.com</u>
 - Consistent intent across individuals
 - Identified via low click entropy, anchor text
- "Personal navigational" queries
 - Different intents across individuals ... but consistently the same intent for an individual
 - SIGIR (for Dumais) -> <u>www.sigir.org/sigir2016</u>
 - SIGIR (for Bowen Jr.) -> <u>www.sigir.mil</u>

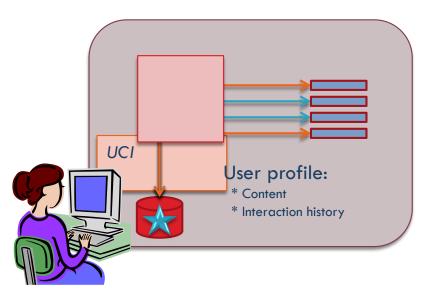
		Repeat Click	New Click
Repeat Query	33%	29%	4%
New Query	67 %	10%	57%
		39%	61%

Personal Navigation Details

- Large-scale log analysis (offline)
 - Identifying personal navigation queries
 - Use consistency of clicks within an individual
 - Specifically, the last two times a person issued the query, did they have a unique click on same result?
 - Coverage and prediction
 - Many such queries: ~12% of queries
 - Prediction accuracy high: ~95% accuracy
 - High coverage, low risk personalization
- \square A/B in situ evaluation (online)
 - Confirmed benefits

Example 2: PSearch

- Rich client-side model of a user's interests
 - Model: Content from desktop search index & Interaction history Rich and constantly evolving user model
 - Client-side re-ranking of web search results using model
 - Good privacy (only the query is sent to server)
 - But, limited portability, and use of community



PSearch Details

- Personalized ranking model
 - Score: Global web score + personal score
 - Personal score: Content match + interaction history features
- Evaluation
 - Offline evaluation, using explicit judgments
 - Online (in situ) A/B evaluation, using PSearch prototype
 - Internal deployment, 225+ people several months
 - 28% higher clicks, for personalized results74% higher, when personal evidence is strong
 - Learned model for when to personalize

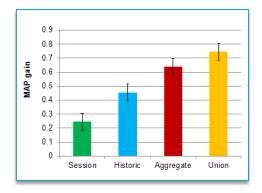
		Personalized Result Clicks	% of total Queries Issued	
Web results		4.3%	36.1%	
Personalized		5.5%	63.9%	
Items matched	1-5	4.2%	22.4%	
	6–10	5.2%	8.5%	
	11–50	6.0%	17.2%	
	51–100	5.6%	5.5%	
	100+	7.5%	10.3%	

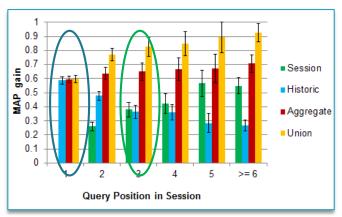
Example 3: Short + Long

- Long-term preferences and interests
 - Behavior: Specific queries/URLs
 - Content: Language models, topic models, etc.
- □ Short-term context
 - 60% of search session have multiple queries
 - Actions within current session (Q, click, topic)
 - (Q=sigir | information retrieval vs. iraq reconstruction)
 - (Q=uci | judy olson vs. road cycling vs. storage containers)
 - (Q=ego | id vs. eldorado gold corporation vs. dangerously in love)
- Personalized ranking model combines both

Short + Long Details

- User model (temporal extent)
 - Session, Historical, Combinations
 - Temporal weighting
- Large-scale log analysis
- Which sources are important?
 - Session (short-term): +25%
 - Historic (long-term): +45%
 - Combinations: +65-75%
- What happens within a session?
 - 1 st query, can only use historical
 - By 3rd query, short-term features more important than long-term





Example 4: A Crowd of Your Own

- Personalized judgments from crowd workers
 - Taste "grokking"
 - Ask crowd workers to understand ("grok") your interests
 - Taste "matching"
 - Find workers who are similar to you (like collaborative filtering)
- Useful for: personal collections, dynamic collections,
 or collections with many unique items
- Studied several subjective tasks
 - Item recommendation (purchasing, food)
 - Text summarization, Handwriting

A Crowd of Your Own

"Personalized" judgments from crowd workers

A Crowd of Your Own Details

Grokking

- Requires fewer workers
- Fun for workers
- Hard to capture complex preferences
- Matching
 - Requires many workers to find a good match
 - Easy for workers
 - Data reusable

	Random	Grok	Match
Salt	1.64	1.07	1.43
shakers		(34 %)	(13 %)
Food	1.51	1.38	1.19
(Boston)		(9 %)	(22 %)
Food	1.58	1.28	1.26
(Seattle)		(19 %)	(20 %)

 Crowdsourcing promising in domains where lack of prior data limits established personalization methods

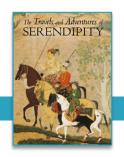
Challenges in Personalization

- User-centered
 - Privacy
 - Serendipity and novelty
 - Transparency and control
- Systems-centered
 - Evaluation
 - Measurement, experimentation
 - System optimization
 - Storage, run-time, caching, etc.

Privacy

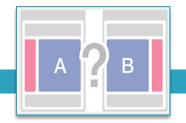
- Profile and content need to be in the same place
- Local profile (e.g., PSearch)
 - Private, only query sent to server
 - Device specific, inefficient, no community learning
- Cloud profile (e.g., Web search)
 - Need transparency and control over what's stored
- Other approaches
 - Public or semi-public profiles (e.g., tweets, Facebook status)
 - Light weight profiles (e.g., queries in a session)
 - Matching to a group vs. an individual

Serendipity and Novelty



- Does personalization mean the end of serendipity?
 - ... Actually, it can improve it!
- Experiment on Relevance vs. Interestingness
 - Personalization finds more <u>relevant</u> results
 - Personalization also finds more interesting results
 - Even when interesting results were not relevant
- Need to be ready for serendipity
 - Like the Princes of Serendip

Evaluation

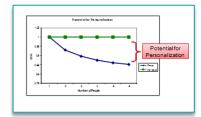


- External judges, e.g., assessors
 - Lack diversity of intents and realistic context
 - Crowdsourcing can help some
- Actual searchers are the "judges"
 - Offline
 - Labels from explicit judgments or implicit behavior (log analysis)
 - Allows safe exploration of many different alternatives
 - Online (A/B experiments)
 - Explicit judgments: Nice, but annoying and may change behavior
 - Implicit judgments: Scalable and natural, but can be very noisy
- Linking implicit actions and explicit judgments

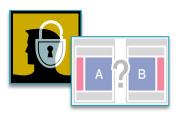
Summary

- Queries difficult to interpret in isolation
 - Augmenting query with context helps

- Potential for improving search via personalization is large
- Examples
 - PNav, PSearch, Short/Long, Crowd



- Challenges
 - Privacy, transparency, serendipity
 - Evaluation, system optimization



 Personalization/contextualization prevalent today, and increasingly so in mobile and proactive scenarios

Thanks!

- Questions?
- More info:

http://research.microsoft.com/~sdumais

□ Collaborators:

Eric Horvitz, Jaime Teevan, Paul Bennett, Ryen White, Kevyn Collins-Thompson, Peter Bailey, Eugene Agichtein, Sarah Tyler, Alex Kotov, Paul André, Carsten Eickhoff

References

Short-term models

- □ White et al., CIKM 2010. Predicting short-term interests using activity based contexts.
- □ Kotov et al., SIGIR 2011. Models and analyses of multi-session search tasks.
- □ Eickhoff et al., WSDM 2013. Personalizing atypical search sessions. *
- □ André et al., CHI 2009. From x-rays to silly putty via Uranus: Serendipity and its role in Web search. *
- □ Fox et al., TOIS 2005. Evaluating implicit measures to improve web search. *

□ Long-term models

- □ Teevan et al., SIGIR 2005. Personalizing search via automated analysis of interests and activities. *
- □ Teevan et al., SIGIR 2008. To personalize or not: Modeling queries with variations in user intent. *
- □ Teevan et al., TOCHI 2010. Potential for personalization. *
- □ Teevan et al., WSDM 2011. Understanding and predicting personal navigation. *
- □ Bennett et al., SIGIR 2012. Modeling the impact of short- & long-term behavior on search personalization. *

□ Personal crowds

- Eickhoff et al., ECIR 2013. Designing human-readable user profiles for search evaluation. *
- to Organisciak et al., HCOMP 2015. A crowd of your own: Crowdsourcing for on-demand personalization. to
- http://www.bing.com/community/site_blogs/b/search/archive/2011/02/10/making-search-yours.aspx
- □ http://www.bing.com/community/site http://www.bing.com/community/site blogs/b/search/archive/2011/09/14/adapting-search-to-you.aspx