
Achieving Success in Open
Software Ecosystems:
The Role of Architectural Styles

Richard N. Taylor
University of California, Irvine

Unpacking the Title (1): Styles

An architectural style is a named collection of
architectural design decisions that
(1) are applicable in a given development context,
(2) constrain architectural design decisions that
are specific to a particular system within that
context, and
(3) elicit beneficial qualities in each resulting
system.

Unpacking the Title (2):
Success? What’s That?

Decreased time to market?
Decreased production cost?
Widespread use?
Profit?
Adaptability?

Yes!

Unpacking the Title (3):
Ecosystems

Product Line: separate products that
share significant technical commonality
in components and structure

Examples: Philips TV sets; the iPhone family

Ecosystem: a complex system
composed of multiple organisms,
interacting with it and with each other

Examples: Amazon, Photoshop, Apple’s iOS Apps

Success Factors
for Product Lines
Business

Business goals motivate
Minimize costs: reuse assets
when possible
Maximize market: develop many
related applications

Domain
Constrains the problem space
enabling focused development

Technology
Technological solutions—tools,
patterns, architectures & styles,
legacy systems—provide a non-
trivial, sustainable basis for
success

Scopes the

Problem Space

Domain Business

Technology

Goals and

Motivation

General

Solutions and

Tools

Core

Competencies

General

Infrastructure

Solutions and

Tools Specialized

for a Domain

Domain-Specific

Software

Engineering

Product Lines

Product Lines v. Ecosystems
Product Lines

usually single agency (a.k.a.development organization)
success criteria: reduced dev costs; faster time to
market; higher quality (esp. initial quality of each
product)

Ecosystems:
multi-agency
widely varying success criteria: profit, visibility, reach,
“coolness,” mindshare, functionality

Ecosystems According to
Jan Bosch

“A software ecosystem consists of a software platform,
a set of internal and external developers, a community
of domain experts and a community of users that
compose relevant solution elements to satisfy their
needs

Platform-based Ecosystems
1 big vendor and lots of
“hangers-on”

SAP

Facebook

SalesForce

eBay

Amazon

AutoCad/AutoDesk

Microsoft

Adobe Flash

Photoshop

Revenue model: biased
towards the platform
vendor

Styles and Platform-based
Ecosystems

The simplest “style”: APIs
“value-adding” products call into the platform
Note: The bigger the vendor the less elegant the APIs
need to be; the less there needs to be any evidence of a
clear, coherent style

I
Component

I

Component
I

Component
I

Component
I

Component
I

Added

Component

Original Application

Exposed Interface

(API)

Interface Binding

(connector)

Language Interpreter Style

The platform provides a language for
value-adding products

Richer, more coherent extension mechanism than
APIs
Flash ActionScript
Visual Basic for Applications (VBA)

Component
I

Scripting

Language

Intepreter

Component
I

Component
I

Component
I

Original Application
Scripting Language

Interface

Interpreted by

Scripted

Component

The Plug-In Architectural
Style

Added

Component

I
Component

I

Component
I

Component
I

Component
I

Component
I

Original Application

Interface Demanded by Original Application

and Exposed by New Component

Interface Binding

(connector)

Example: Eclipse

Example: Photoshop

Example: Apple iOS Apps
“MVC is central to a good design for
any iOS app or Mac app.”

The Model-View-Controller
Style

View

(Encapsulation of

display choices)

Controller

(Encapsulation

of interaction

semantics)

Model

(Encapsulation

of information)

Graphical

Display

User-

interface

Events

iOS App Design & Dev
Architectural Styles (aka Design Patterns)

MVC
Event Notification

Frameworks
Cocoa and Quartz
Foundation, UIkit, Core Graphics

Guidance and guidelines
“iOS Human Interface Guidelines”

XCode SDK

Event-based Styles

Added

Component

I

Component
I

Component
I

Component
I

Component
I

Component
I

Original Application

Incoming Event

Interface

Outgoing Event Interface

Event Mechanism (connector)

I

Key benefit: very strong decoupling of
components

Event-based Ecosystems

TIBCO and financial trading systems
(Also used as the backbone for FedEx tracking)

The event system as “the platform”
Routing services

Event-definition language, standards, or framework

What is a Platform?
Bosch: A vendor’s main product, holding state,
providing key services, “the brand”, ...

Is GPS a Platform?

Aircraft transponder vectors?

Financial information?
The Financial Information eXchange (FIX) Protocol is a messaging standard
developed specifically for the real-time electronic exchange of securities
transactions. FIX is a public-domain specification owned and maintained by FIX
Protocol, Ltd.

A platform is a shared understanding. But just how much
does one have to share in order to have an “understanding”?

Decentralized Ecosystems
The essence of decentralization: multiple, independent
spheres of authority

“Openness” is not necessary for decentralization

Multiple domains
e-commerce, healthcare, defense, space systems, power grids, highways, ...

Multiple objectives within a domain
Not all of which are shared; Not everyone is aligned

Not all of which are compatible

Not all of which are benign

The presence of competition virtually
guarantees non-alignment

Platforms for Decentralized
Ecosystems

Given independence, competing
interests, and inherent risk, what suffices
as a platform?
Answer #1: Weak standards, like FIX or
GPS
Answer #2: Minimal protocols, like TCP
But for substantive interplay?

Web Services, Take 1
SOAP over HTTP plus WSDL and others
In essence:

APIs
Simple transport protocol (using HTTP to do RPC)

Not particularly “successful” — though
widely used
Later improved via Enterprise Service
Buses

Providing a more event-based interaction platform

Web Services, Take 2:
RESTful

“The world of web services has been on
fast track to supernova ever since the
architect astronauts spotted another
meme to rocket out of pragmatism and
into the universe of enterprises. But,
thankfully, all is not lost. A renaissance
of HTTP appreciation is building and,
under the banner of REST, shows a
credible alternative to what the
merchants of complexity are trying to
ram down everyone’s throats; a simple
set of principles that every day
developers can use to connect
applications in a style native to the
Web.” -- David Heinemeier Hansson,
Foreword to RESTful Web Services.

RESTful Design Principles
Addressability of information (via URLs)
Context-free interactions (application
state on the client; resource state on the
server)
Links and connectedness (HATEOAS)

Appropriate use of the uniform interface
(i.e. GET, PUT, DELETE, HEAD, POST)

Example users: Amazon S3, IBM, Oracle

Many Extensions,
Many Uses

E.g. AJAX, Rails (Platform-building
platform)
Blending styles: language-based
extension, mobile code, MVC, …
(Note: RPC-over-HTTP, or SOAP-over-
HTTP is not REST)

Rails
Ecosystem

REST
Language-
extension
MVC

Supporting 200,000+ websites

The Nasty Parts of
Decentralized Systems

Security
Trust
Adaptation: Innumerable requests for
change and specialization

Thus, what style for open, decentralized, critical
ecosystems, with such risks and demands?

COmputAtional State
Transfer (COAST)

The COAST style:
For decentralized applications (the context)

Based on mobile computations, communication
constraints, Principle of Least Authority* (the
constraints)

Yields dynamic adaptability, pervasive security, ...
(some of the beneficial qualities as architectural
consequences)

*All men are by nature fond of power, unwilling to part with the possession of it...[thus]...no man, or
body of men, ought to be entrusted with the united powers of Government, or more command than
is absolutely necessary to discharge the particular office committed to him" — Anonymous, 1776

The Key Style Insights

Architecture can induce security
Architecture can induce adaptivity
Adaptivity and security need not be at
odds

Architecture can embody capability-based security

Revenue Models in COAST:
A “Level Playing Field” Ecosystem

Resource-limiting, loggable CURLs
Per user
Per use
Resource capped
Time-outs

Revocable
Details in: “Communication and Capability URLs in COAST-based Decentralized Services” in

REST: Advanced Research Topics and Practical Applications, Springer, 2013

COAST Status
Full infrastructure in
place for evaluative
applications
Seeking application
partners
Working an electronic
healthcare record
scenario

Why Are Styles So Important?

Styles are a key element in Product Line
and Ecosystem success

A well-chosen, well-designed architectural style is
key to a successful product line or ecosystem

Why? Styles carry experience, aid
communication, provide vocabulary,
speed design, yield predictable benefits

Conceptual Integrity

Take-Aways
Take-away #1: A well-chosen, well-
designed architectural style is key to a
successful ecosystem
Take-away #2: Multi-agency,
decentralized applications offer special
challenges and demand new approaches
Take-away #3: COAST offers end-to-end
security, client-initiated customization,
and a flexible revenue model

Acknowledgments

✦Eric M. Dashofy
The Aerospace Corporation

✦Michael M. Gorlick
The Aerospace Corporation and UC Irvine

