Coordination in Distributed Software Development

Anita Sarma
University of Nebraska, Lincoln
May 16, 2014

2

g Empirically-based
™~ software Quality Research Computer Science and Engineering, UNL e2.unl.edu 1



My Research H“l

Empirically-based . . 2.unl.edu 2
Software Quality Research Computer Science and Engineering, UNL e2.unl.edu




My Research H“l

Empirically-based . . 2.unl.edu 3
Software Quality Research Computer Science and Engineering, UNL e2.unl.edu




‘I
Software Development “
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|
Project Dependencies H“

Relationships among developers in CPAN

Dependencies among packages in PERL language
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Project Evolution “

Evolution over different
versions
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Conflicts in Distributed Software Development

» Direct Conflicts: Two developers edit the same file
concurrently (Merge conflicts)

» Indirect Conflicts: Conflicts arising because of changes
in one file affecting changes in another (Build and Test
conflicts)
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‘ !
Conflicts in Distributed Software Development “

T T Wewe | ewe [ e

#Merges # Res. Days # Res. Days # Res. Days
Avg (Med) Avg (Med) Avg (Med)

Perl 74 (40%) 14 (8%)  23(10) 4(2%)  0.7(1) 56(30%) 31(14)
Storm 88 39 (44%) 17 (19%) 6(2) 9 (10%) 5(8)  13(15%)  8(3)
Jenkins 505 204 (54%) 68(14%)  23(4)  74(15%) 5(2) 28 (6%) 7(2)

Voldemort 380 170 (34%) 55(15%) 20 (4) 16 (4%) 2(0.75) 133(35%) 6 (4)

» Merge conflicts: 8% to 19%
» Build conflicts: 2% to 15%
» Test conflicts: 6% to 35%
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|
Coordination in Distributed Software Development “

» How can we
— identify emerging conflicts?
— predict the severity of conflicts?
— be proactive and avoid conflicting situations?
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‘ !
Workspace Awareness ‘ ‘

» Monitor ongoing changes in remote workspace

» |ldentify potential conflicts
— merge conflicts (direct conflicts)
— conflicts arising from dependency violation (indirect conflicts)

» Notify developers of emerging conflicts
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Palantir

& Java - CreditCard. java - Eclipse SDK

‘ !
[ICSE 2003, ASE 2007, FSE 2008, TSE 2012]
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IResuIts “l

» Conflicts are detected as they emerge

» Developers undertake action upon noticing a potential
conflict

> Fewer conflicts grow “out of hand”
» The resulting code is of higher quality

» The penalty may be a small increase in time now

— but the experiments do not account for the time /ater that developers
must otherwise spend on resolving conflicts that are committed to
the CM repository
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|
‘Other Workspace Awareness tools ‘ |

» Current tools (Conflict mitigation):
— CollabVS [Dewan et al., ECSCW’07]
— FastDash [Biehl et al., CHI'O7 ]
— Crystal [Brun et al. FSE'11]

B Lot Sosce Refatr Nese Sewch Bomt B Windw beD

Sstore [5:
+1'J| Address.java [5:24] [1>>]
+ 1)) >CreditCard.java [I1<<] 1.

+ (I Demogpaphics v 1.1 (A5
o (1] Gcad o 1.1 (ASCE1 40

@ Crystal - George
File About

master Paul Ringo John

v /TR D

master Jeff Roy Bob Tom

:'?‘r:'dg’e 'k )k @ )R )k

I —

j/}"; Empirically-based
— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 14



. Limitations ‘ "

» Conflicts identified after they occur
» Developers have to understand the significance and self-coordinate
» Coarse grained impact analysis

» Potential for information overload and Interruption
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(some) Solutions ‘ 5

» Proactive conflict prediction among tasks

» Predicting conflict complexity from project history

» Using development context to scope impact analysis
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|
Cassandra [ICSE 2013, USER %Ls]

Schedule independent tasks to minimize conflicts arising
because of concurrent software development

— proactive instead of reactive

— solutions at the task level

— avoid individualistic solution e.g. race conditions
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‘Cassandra Approach

+ I » Obtain task context (task — files)
. 1 » Order of tasks (Developer preferences)
_— = » ldentify edited files (F,)
‘ ¢ > ldentify dependent files (F,)
. L N
L] < $ >l > Analyze tasks for conflicts
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|
‘Cassandra Approach “

» Obtain task context (task — files)
Order of tasks (Developer preferences)
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|
IConstraint Evaluation “

Evaluate Constraints (Z3)
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» Display conflict
information
» Display recommended
task order
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IConstraint Evaluation “

Evaluate Constraints (Z3)

Re-evaluate Re-evaluate
constraints constraints
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» Display conflict
information
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task order
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|
‘Results, Ongoing Work “

» Cassandra successful in
— scheduling conflict minimal tasks
— 50%-97% conflicts avoided
— optimizing based on developer preferences
— 2-3 seconds; Maximum (6 months data): 3 min

» Ongoing work
— sensitivity of task context precision
— unSAT heuristics: automatically predict conflict complexity
— consider task duration as a constraint
— deployment
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(some) Solutions

» Predicting conflict complexity from project history
— use Machine Learning to predict severity of merge, build, test
conflicts
— features selected: # files, file names, configuration files
— F measures (merge conflict - 0.92, build - 0.87, test —0.84)

» Using development context to scope impact analysis

— Change of interest: the single change set and at a set granularity

— Region of interest: active workspace, public API, specific developer
changesets
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. Contributions

» Eliminate seclusion, while maintaining insulation

» Early detection of conflicts to proactive detection

» Granularity of conflict notification at the level of tasks
» Analyze repositories to identify conflict complexity

» Use development context to scope change impact analysis
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— NSF CCF -1016134, 11S-1110916, 11S-1314365, CCF-CAREER
— AFOSR - 9550-10-1-0406

» Interaction Design and Coordination Lab & Collaborators
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