Coordination in Distributed Software Development

Anita Sarma
University of Nebraska, Lincoln
May 16, 2014

2

g Empirically-based
™~ software Quality Research Computer Science and Engineering, UNL e2.unl.edu 1

My Research H“l

Empirically-based . . 2.unl.edu 2
Software Quality Research Computer Science and Engineering, UNL e2.unl.edu

My Research H“l

Empirically-based . . 2.unl.edu 3
Software Quality Research Computer Science and Engineering, UNL e2.unl.edu

‘I
Software Development “

A]‘

/1 Empirically-based . . 2.unl.edu 4
—~— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu

|
Project Dependencies H“

Relationships among developers in CPAN

Dependencies among packages in PERL language

_é Empirically-based
— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 5

|
Project Evolution “

Evolution over different
versions

© Visualcomplexity.com

/. Empirically-based
— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 6

Conflicts in Distributed Software Development

» Direct Conflicts: Two developers edit the same file
concurrently (Merge conflicts)

» Indirect Conflicts: Conflicts arising because of changes
in one file affecting changes in another (Build and Test
conflicts)

M~

A
i
‘{3

Computer Science and Engineering, UNL

2

g Empirically-based
~—— — Software Quality Research

e2.unl.edu 7

‘ !
Conflicts in Distributed Software Development “

T T Wewe | ewe [e

#Merges # Res. Days # Res. Days # Res. Days
Avg (Med) Avg (Med) Avg (Med)

Perl 74 (40%) 14 (8%) 23(10) 4(2%) 0.7(1) 56(30%) 31(14)
Storm 88 39 (44%) 17 (19%) 6(2) 9 (10%) 5(8) 13(15%) 8(3)
Jenkins 505 204 (54%) 68(14%) 23(4) 74(15%) 5(2) 28 (6%) 7(2)

Voldemort 380 170 (34%) 55(15%) 20 (4) 16 (4%) 2(0.75) 133(35%) 6 (4)

» Merge conflicts: 8% to 19%
» Build conflicts: 2% to 15%
» Test conflicts: 6% to 35%

'/ Empirically-based
— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 8

|
Coordination in Distributed Software Development “

» How can we
— identify emerging conflicts?
— predict the severity of conflicts?
— be proactive and avoid conflicting situations?

/- Empirically-based
—~—— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 9

|
Coordination in Distributed Software Development “

» How can we
— identify emerging conflicts?
— predict the severity of conflicts?
— be proactive and avoid conflicting situations?

/- Empirically-based
—~—— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 10

‘ !
Workspace Awareness ‘ ‘

» Monitor ongoing changes in remote workspace

» |ldentify potential conflicts
— merge conflicts (direct conflicts)
— conflicts arising from dependency violation (indirect conflicts)

» Notify developers of emerging conflicts

/- Empirically-based
—~—— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 11

Palantir

& Java - CreditCard. java - Eclipse SDK

‘ !
[ICSE 2003, ASE 2007, FSE 2008, TSE 2012]

File Edit Source Refactor Mavigate Search Project Run Window Help
F-EE3%-0-%- | EHECG- | @ | B |-l -0 - & | 81ava 2
[£ Package Explorer 52 =08 ;ﬂ CreditCard.java X =0
= _bv ~ private static int MINOR = O; A8
S| L—ﬁ =Store [5:2] [palantir.ics.uci.edu] ~ private static int ADULT = 1;
=8 »src [5:2]
I t S? L card, para Customer
_;_jhlj >S Ore ' brier customer) {
5 Ent (Paynent. creditCard, Payment.bankAccount, "1156");
Add ' S 8 24 I bustomer . getAddress () ;
ress .]ava] > > address.getZip();
[___ Pawe ()
+ ﬂ >cred|tcard]ava [I < <] 1 F custoner.getDemographicsi()
poe ()
- Bos ‘. .
+-[J) Ttem.java 1.1 (ASCII -kkv) customerType = ADULT:
+[J) TtemID.java 1.1 (ASCII -kkv) else
+[J) Manager.java 1.1 (ASCII -kkv _ i
41} Order.java 1.1 (ASCII kkv) customerType = MINOR:
+- 111 Payment.java [5:18] [I>>] 1.1
4 (1) PreOrder.java 1.1 (ASCIT -kky }
+-[J) Review.java 1.1 {(ASCII -kkv)))
+ [B Shipping.java 1.1 (ASCII-kkv; - public String getNawe () {
[P Flcmmim e et i 4 4 FAC/TY return name;
< | > }
= - = v
o= Outline 53 =0
a4 W S L g -
B R ¥ e ¥ Problems | Javadoc | Palantir Connections | B [Storefsrc/store/CreditCard.java 52 =08
+ Stri ~
o name : String . — || Conflicting: 2, Warning: 1
49 customerType : int
49 payment : Payment Author I ImpactType | Resource I Re... | ChangeStatus I Timest... I Reason
4@ accountHolderZip : String & Pete IMPACTEDBY [Storejsrc/storefaddress.javal.l Ellen Changes Committed FriSep... Modified class: Deleted method getMame()
Jy accountMame : String & Pete IMPACTEDEY [Storefsrc/store/Customer.javal.1 Ellen Changes InProgress FriSep... Modified class: Deleted method getDemographics() and
o ¥ MINOR : int T A Pete IMPACTEDBY [Store/src/storefPayment.javal.l Ellen Change Added FriSep... Modified class: Added new method init {cardType, int pe
o S ADULT :int
o © CreditCard(Customer) v < ‘ >
Writable Smart Insert 20:45

Empirically-based
Software Quality Research

Computer Science and Engineering, UNL

e2.unl.edu 12

IResuIts “l

» Conflicts are detected as they emerge

» Developers undertake action upon noticing a potential
conflict

> Fewer conflicts grow “out of hand”
» The resulting code is of higher quality

» The penalty may be a small increase in time now

— but the experiments do not account for the time /ater that developers
must otherwise spend on resolving conflicts that are committed to
the CM repository

/- Empirically-based
—~—— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 13

|
‘Other Workspace Awareness tools ‘ |

» Current tools (Conflict mitigation):
— CollabVS [Dewan et al., ECSCW’07]
— FastDash [Biehl et al., CHI'O7]
— Crystal [Brun et al. FSE'11]

B Lot Sosce Refatr Nese Sewch Bomt B Windw beD

Sstore [5:
+1'J| Address.java [5:24] [1>>]
+ 1)) >CreditCard.java [I1<<] 1.

+ (I Demogpaphics v 1.1 (A5
o (1] Gcad o 1.1 (ASCE1 40

@ Crystal - George
File About

master Paul Ringo John

v /TR D

master Jeff Roy Bob Tom

:'?‘r:'dg’e 'k)k @)R)k

I —

j/}"; Empirically-based
— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 14

. Limitations ‘ "

» Conflicts identified after they occur
» Developers have to understand the significance and self-coordinate
» Coarse grained impact analysis

» Potential for information overload and Interruption

2
g— Empirically-based

Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 15

(some) Solutions ‘ 5

» Proactive conflict prediction among tasks

» Predicting conflict complexity from project history

» Using development context to scope impact analysis

/- Empirically-based
™~ software Quality Research Computer Science and Engineering, UNL e2.unl.edu 16

(some) Solutions ‘ 5

» Proactive conflict prediction among tasks
» Predicting conflict complexity from project history

» Using development context to scope impact analysis

2

g_ Empirically-based

Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 17

|
Cassandra [ICSE 2013, USER %Ls]

Schedule independent tasks to minimize conflicts arising
because of concurrent software development

— proactive instead of reactive

— solutions at the task level

— avoid individualistic solution e.g. race conditions

2

/- Empirically-based
—~—— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 18

‘Cassandra Approach

+ I » Obtain task context (task — files)
. 1 » Order of tasks (Developer preferences)
_— = » ldentify edited files (F,)
‘ ¢ > ldentify dependent files (F,)
. L N
L] < $ >l > Analyze tasks for conflicts
BN] e

2

g_ Empirically-based

Software Quality Research Computer Science and Engineering, UNL

e2.unl.edu 19

|
‘Cassandra Approach “

» Obtain task context (task — files)
Order of tasks (Developer preferences)

-
\%

- g » ldentify edited files (F,)
‘ ¢ > ldentify dependent files (F)
e D .
L] < :E >l > Analyze tasks for conflicts
" 0] 7
l, Evaluate Constraints
>/7D¢ » Formalize constraints
D D — hard constraints (>)
D 4 — soft constraints (#)

2

/- Empirically-based
™~ software Quality Research Computer Science and Engineering, UNL e2.unl.edu 20

|
IConstraint Evaluation “

Evaluate Constraints (Z3)

AV %Y

Re-evaluate
constraints

SAT

[4 2 3 1] | » Optimize Solution

>< > Match developer
[12 374] preferences

» Display conflict
information
» Display recommended
task order
2
g /° Empirically-based
~— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 21

|
IConstraint Evaluation “

Evaluate Constraints (Z3)

Re-evaluate Re-evaluate
constraints constraints
SAT UnSAT
[423 1] | » Optimize Solution >/,D
>< » Match developer T E).... (]
[172 374] preferences n #

> Relax constraints

» Display conflict
information
» Display recommended
task order
2]
g /° Empirically-based
***** Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 22

|
‘Results, Ongoing Work “

» Cassandra successful in
— scheduling conflict minimal tasks
— 50%-97% conflicts avoided
— optimizing based on developer preferences
— 2-3 seconds; Maximum (6 months data): 3 min

» Ongoing work
— sensitivity of task context precision
— unSAT heuristics: automatically predict conflict complexity
— consider task duration as a constraint
— deployment

/- Empirically-based
—~—— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 23

(some) Solutions

» Predicting conflict complexity from project history
— use Machine Learning to predict severity of merge, build, test
conflicts
— features selected: # files, file names, configuration files
— F measures (merge conflict - 0.92, build - 0.87, test —0.84)

» Using development context to scope impact analysis

— Change of interest: the single change set and at a set granularity

— Region of interest: active workspace, public API, specific developer
changesets

/- Empirically-based
—~—— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 24

. Contributions

» Eliminate seclusion, while maintaining insulation

» Early detection of conflicts to proactive detection

» Granularity of conflict notification at the level of tasks
» Analyze repositories to identify conflict complexity

» Use development context to scope change impact analysis

~ /' Empirically-based
— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 25

‘Thank you! “l

» This work is supported by:
— NSF CCF -1016134, 11S-1110916, 11S-1314365, CCF-CAREER
— AFOSR - 9550-10-1-0406

» Interaction Design and Coordination Lab & Collaborators

2

g /= Empirically-based

Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 26

. Contributions

» Eliminate seclusion, while maintaining insulation

» Early detection of conflicts to proactive detection

» Granularity of conflict notification at the level of tasks
» Analyze repositories to identify conflict complexity

» Use development context to scope change impact analysis

~ /' Empirically-based
— Software Quality Research Computer Science and Engineering, UNL e2.unl.edu 27

