
Software Engineering at
Google Scale
Marija Mikic
Google Los Angeles

Background

● Ph.D. in Software Engineering in 2004
○ Software architecture
○ System deployment and adaptation

● @ Google for ~12 years
● Worked on several projects within Ads
● Managing since 2008
● My team

○ 27 engineers
○ 3 statisticians
○ 10 linguists
○ PM

Google by the numbers

● ~50,000,000,000 - The number Android app downloads
● ~1,000,000,000 - The number of active Android users
● ~500,000,000 - The number of active gmail accounts
● ~5,000,000 - The amount of miles Google cars have driven

to acquire map information for Project Truth
● ~4,000,000 - The amount of queries Google receives per min
● ~1,300,000 - The number of apps in the Google Play Store
● ~840,000 - The amount of miles Google self-driving cars

have driven to date
● ~90 - The number of languages supported by Google

Translate
● 1 - The Google user experience

One Google experience

Google
Instant

Related
Searches

Product
Search

Video
Search

Image
Search

Entity search

Google
Ads

Web
Search

Search
Results
Page

Many systems work together and produce a single, coherent
result within hundreds of milliseconds!

One Google experience

One Google experience

One Google experience

One Google experience

One Google experience

One Google experience

Explosive computational requirements

● Growing in many dimensions
○ More users, use more
○ More data

■ web pages, videos, ads, mailboxes,
blogs, etc.

○ Better quality
■ more relevant, faster response,

“understanding user intent”

Google DC in 1999

Google DC today

How do we build Google systems?

Need to balance:
● Simplicity

● Features

● Platform transparency

● Latency

● Scalability
● Fault-tolerance
● Reliability
● Evolvability
● Availability
● ...

Development scale

Billions of
LOC

~20K active
developers

~100K daily
changes to
code repository

Reuse to the rescue - Google technology
stack

Google technology stack (selected subset)

● Common data language
● Common RPC mechanism
● Data storage solutions

○ Bigtable
○ Spanner
○ Colosus (GFS++)

● Processing pipelines
● GUI frameworks
● Logging
● Logs processing
● Testing
● Monitoring/Alerting
● Deployment
● Runtime evolution
● ….

Message passing

● Protocol buffers
● Language neutral construct for serializing structured data

message SearchRequest {

 required string query = 1;

 optional int32 page_number = 2; // Which page number do we want?

 optional int32 results_per_page = 3; // Number of results to return per page.

}

● Enables exchange of data among Google components or systems - lingua franca
● ~50K different message types in Google code tree across ~12K .proto files
● Used in RPC communication and for persistent storage of data

Stubby (gRPC)

● Extends the .proto files with
definition of services (http://www.
grpc.io)

● Services define inputs and outputs
in terms of .proto messages

● Enables any two Google
components written in any
language to communicate

● Forms the “microservice
architecture” paradigm

// The query service definition.

service QueryService {

 // respond to search

 rpc Search(SearchRequest) returns (SearchReply) {}

}

// The request message with the query string.

message SearchRequest {

 required string query = 1;

}

// The reply message with the search and ad results

message SearchReply {

 repeated SearchResult result = 1;

 repeated AdResult ad_result = 2;

}

http://www.grpc.io
http://www.grpc.io
http://www.grpc.io

Common storage platform - Bigtable

● Database service powering many
Google systems (search, analytics,
maps, gmail, ...)

● Highly scalable
○ sparsely populated table that can scale

to billions of rows and thousands of
columns, petabytes of data

● Rows indexed - ideal for single key
data and very low latency

● Availability and reliability through
redundancy/replication

● High read/write low latency rates
● Ideal for Mapreduce operations

Common logging and log processing

● Reusable constructs for logging system behavior
● Log processing framework for extracting

information from the logs
● Common components for data sampling and

aggregation
● Data access security

123.45.67.89 - 25/Mar/2002 10:15:32 -

http://www.google.com/search?q=cars -

Firefox 1.0.7; Windows NT 5.1 -

740674ce2123e969

Data processing

Dataflow systems are commonly needed at Google
● Reusable components for dataflow processing
● Processing organized into stages
● At each stage there is some “worker type” binary that consumes work from

previous stages and produces some output data
● Guarantees all work is executed exactly once or reflected in the current system

state
● Multiple instances of given worker type can be self-scheduled and grab

applicable work
● Resilient to intermittent failures (worker does not “consume” task until it

succeeds)

Testing support at Google

● TAP - for fast (unit) tests
○ runs all affected unit tests on every change

sent for review
○ reports status on CL

● GUITAR - Google Unified Integration Testing
and Releasing
○ longer tests
○ tests that require a lot of setup
○ tests that may require a lot of resources

Deployment - Borg

● System for distribution of jobs and
tasks within a machine cluster

● Hides the details of resource
management and failure handling

● Operates with very high reliability and
availability, and supports applications
that do the same

● Assigns jobs to machines while
satisfying resource
constraints/requirements

Common monitoring and alerting

● Varz: common libraries to track the state
of the system

○ E.g., number of queries

○ Can monitor state of single task or multiple
replicas

● Borgmon
○ System and rules to monitor interesting

(combinations of) the variables
○ Automatic dashboard generation

● Alert manager to escalate when defined
rules trigger

● Metamon - monitoring borgmon

Ads Server

Controlled system evolution - experiment framework

Google Web Search

Ads Server
V1

Ads Server
V2

E
X
P
T

● Divert small portion of end user traffic to the new version
● Measure effect of a change before it is rolled out to everyone

SWE organization

SWE Organization at Google

● Google systems are organized into Product Areas

YT ads

Display Ads
(AdWords)

SWE Organization at Google

● Within each PA, there are multiple products
○ Search ads
○ Product listing ads
○ Display ads
○ YT ads
○ ...

● Within each product, there are many projects/teams
○ SmartAss
○ AdsUI
○ ...

Product Area (Ads)

SearchAds

AdsUISmartAss

Team roles

● TLs
○ In charge of large project or several medium-size projects
○ Plan work for the team (objectives -> design)
○ Guide more junior engineers
○ Approve designs by more junior engineers

● TLM
○ In charge of multiple projects, manages 1+ teams (5 in my case)
○ Sets project direction and also manages people
○ Works across the organization to plan and execute work

● PMs
○ Works with TL/Ms from all relevant teams to develop product direction

● Engineers
○ Junior: works on many tasks designed by more senior team members
○ Senior: owns larger parts of project from design to delivery

● Statisticians, Linguists, …

SWE Organization at Google - Team

● Team objectives are planned yearly and quarterly
○ Prioritize (risk/opportunity assessment)
○ Binary vs incremental

● Multiple teams typically share objectives
● Regular iteration schedule

○ Check in on objectives
○ Communicate the status of previous iteration

○ Plan next iteration of work
(design/development/testing/releasing/monitoring)

● Daily stand-up meeting

SWE Organization at Google - Team

● Team process needs to continuously adapt to
○ Team structure (new eng vs attrition)
○ Project scope/complexity
○ Inter-project dependencies
○ Project deadlines
○ Available resources

● Always re-examine the current state
○ What is working well and what is not
○ What are the risks

● Who participates in what phase of the process
○ Efficiency (can you effectively brainstorm with 10 people)

● Communication
○ Within team and across teams

● Team structure
○ One big team vs. several smaller teams

Development process at Google

Development process at Google

● Prototype-launch-measure-improve
● Requirements

○ Derived from strategic objectives

■ Cascaded to projects and specific objectives within a
(set of) project(s)

○ Non-functional requirements
■ Derived from measuring current state

○ Driven by the infrastructure changes
■ E.g., migration to new storage platform

Improve Launch

Prototype

Measure

Architecture/Design

● Capture at different levels how requirements will
be met

● Heavily influenced by Google scale and available
infrastructure/components

● Heavily influenced by non-functional requirements
○ Scalability
○ Latency
○ Fault-tolerance

● Frequently involve back-of-the envelope
calculations

○ How much data, QPS, CPU,....

● No project should be scheduled for implementation
if it does not have a design

○ Schedule design/prototype work first

Architecture/Design

● High level view
○ Architecture diagram, highlighting new/changed/removed

components

● What are the major components, and how do they
interact?

● What are the inputs and outputs?
● What changes to the existing system/components

are needed
● What is the underlying data model, why is it

structured that way
● How much data?
● Other non-functional properties?
● Rollout plan

Production readiness

● Resource requirements
○ Only theoretically unlimited computational resources

Production readiness

● Resource requirements
○ Only theoretically unlimited computational resources

● Latency

Production readiness

● Resource requirements
○ Only theoretically unlimited computational resources

● Latency
● Availability

Production readiness

● Resource requirements
○ Only theoretically unlimited computational resources

● Latency
● Availability
● Scalability

Production readiness

● Resource requirements
○ Only theoretically unlimited computational resources

● Latency
● Availability
● Scalability
● Traffic capacity

Production readiness

● Resource requirements
○ Only theoretically unlimited computational resources

● Latency
● Availability
● Scalability
● Traffic capacity
● Load balancing

Production readiness

● Resource requirements
○ Only theoretically unlimited computational resources

● Latency
● Availability
● Scalability
● Traffic capacity
● Load balancing
● Monitoring
● Alerting

Design and launch decisions

● Engineers make “smaller” design decisions
● TLs design systems
● Micro-scheduling of design reviews

○ Everyone can schedule them
○ Design review can become design tutoring
○ Within the team for smaller changes
○ With other teams/TL for any bigger/visible change

● What happens during design reviews
○ Flaws and unintended effects (hopefully) identified
○ Alternatives suggested
○ Selection of launch criteria

● Launch reviews
○ Data driven launch decisions
○ Security and privacy sign-off

Some rules of design at Google

● Design document should be in sync with the implementation
○ New tools make it easier to require

● Feedback should be sought early and often
○ Design needs signoff from relevant stakeholders

● Prototype key elements to evaluate your design
● Understand design choices and limitations of existing components/systems
● Research existing solutions to similar problems
● Document tradeoffs and alternatives considered
● The Pareto principle (20-80)

○ What is good enough?

Design challenges

● Lots of data, lots of computing power
○ Low-level implementation details matter at scale

● Building products/features from reusable components should be fast
○ Reusable components focus on subset of common developer challenges

■ Designing around the component limitations is often hard

● Right design at X may be very wrong at 10X or 100X
○ Design for ~10X growth, but plan to rewrite before ~100X

● Understanding the impact of proposed changes is critical
● Balancing new features against technical debt

Tools Google engineers use daily

● Source control / changelists / version control

Tools Google engineers use daily

● Source control / changelists / version control
● Bug tracking systems

Tools Google engineers use daily

● Source control / changelists / version control
● Bug tracking systems
● Development process tracking tools (jira)

Tools Google engineers use daily

● Source control / changelists / version control
● Bug tracking systems
● Development process tracking tools (jira)
● An editor for programming

Tools Google engineers use daily

● Source control / changelists / version control
● Bug tracking systems
● Development process tracking tools (jira)
● An editor for programming
● One-touch build system
● Deployment tools
● Deployment monitoring tools
● Tons of documentation, codelabs
● Code search
● Test frameworks
● Code reviews, code review tools
● Email, email, email
● IM, hangouts

Implementation support at Google

● Code search
● Single code repository (Piper)

○ Many facets to make sure development
 continues to scale

● Eclipse plug-ins for Google
● Powerful code review tool
● Automatic code checks

○ Style violations,
○ Testing breakages,
○ Test coverage, ...

● Submit queue
○ Ensures only approved code with all tests passing can be submitted

● Continuous builds/integration tests

Implementation workflow for Google engineers

● Start new jira story/task
● Checkout relevant code from repository
● Make the changes in your favorite editor
● Make it “work”!
● Add adequate logging to measure and report state
● Add/update tests to cover the functionality added/changed/removed
● Add/update release tests
● Run the tests and make sure they pass
● Update relevant documentation
● Create a CL (containing code, tests, and documentation changes)
● Self review the CL, cleanup
● Send for code review

Implementation workflow for Google engineers

● Code review - iterative process
○ change is automatically ran against the main branch
○ at least another pair of eyes, sometimes more
○ address comments

● Are you done?
○ Document release process
○ Follow up CLs

■ Update monitoring and alerting
○ See it through release

Release process

Pushmaster is a shared team responsibility (TLs, eng)
● Regular (e.g., bi-weekly) release schedule
● All relevant changes with test plans associated with the release documented
● Staging environment
● Push master builds and pushes to staging
● Push master tests all the new features
● Push master runs test plan
● Full automation of tests, eventually
● Push

Release process support

● Borg
○ Automatic management jobs/tasks across datacenters and machines

● Release tool - Rapid
○ Packages multiple binaries into single release package
○ Ensures all tests pass
○ Automatic deployment to staging environment
○ Non-automated tests executed in staging
○ Deployment to production

Monitoring and alerting

● Google engineers assume things will fail
○ Processes, machines, DCs

● Provide appropriate alerting in each case
○ Will Borg handle it or someone needs to know

● In case of alerts create playbook entries
○ On call engineer should know how to respond to alert

● Post-mortems for issues that were not anticipated
● On-call - shared responsibility (TLs, eng)

○ Makes sure systems behave
○ Responds to alerts
○ Makes it easier for next on-call
○ Full-time job for 1-2 weeks

Development Scenario #1

Development scenario #1: adding a new field to the proto message

message SearchRequest {

 required string query = 1;

 optional int32 page_number = 2; // Which page number do we want?

 optional int32 results_per_page = 3; // Number of results to return per page.

}

Development scenario #1: adding a new field to the proto message

message SearchRequest {

 required string query = 1;

 optional int32 page_number = 2; // Which page number do we want?

 optional int32 results_per_page = 3; // Number of results to return per page.

 required Location query_origin = 4;

}

message SearchRequest {

 required string query = 1;

 optional int32 page_number = 2; // Which page number do we want?

 optional int32 results_per_page = 3; // Number of results to return per page.

 required Location query_origin = 4;

}

● Any issues with this change?

Development scenario #1: adding a new field to the proto message

Backwards/forwards compatibility

● Components generating and reading the data must continue to “understand”
each other

● Existing data needs to continue to be valid or needs to be backfilled

● Common language comes with some limitations
● Understanding HOW components interact is required for making changes

Backwards/forwards compatibility

● Components generating and reading the data must continue to “understand”
each other

● Existing data needs to continue to be valid or needs to be backfilled

● Common language comes with some limitations
● Understanding HOW components interact is required for making changes

● Proto 3 removes handles backwards compatibility by removing optional/required
and making all proto fields optional

● It is up to application logic to enforce/expect exact instance of proto fields

Development Scenario #2

Development scenario #2: debugging a live system

● Insufficient information about what I am trying to debug is logged
● I am going to add this small 1 line change and log what I need
● I need to debug this quickly so I am just going to build the new binary with my

change and push

● Any issues with this change?

● Assumed the only change being pushed is the 1 line change
● If the change was not “cherrypicked”, the developer might have picked additional

changes that have not gone through the full release test process
● Untested changes might be anywhere

● Any other issues with this change?

Development scenario #2: debugging a live system

● How often is that 1 line change logged?
● How much information is being logged?
● Where does the logged information live?

○ Temporary logs (expire/get deleted regularly)

Development scenario #2: debugging a live system

● How often is that 1 line change logged?
● How much information is being logged?
● Where does the logged information live?

○ Temporary logs (expire/get deleted regularly)

● Even small changes can have big impact if they happen very frequently

Development scenario #2: debugging a live system

Development Scenario #3

Development scenario #3: scalability, latency, fault tolerance

● Replacing data storage component
● Substantial testing in “staging” environment
● Successful rollout to production
● 3 days later, lots of slowness, failures

● What happened?

● Replacing data storage layer
● Substantial testing in “staging” environment
● Successful rollout to production
● 3 days later, lots of slowness, failures

● Staging data not big enough to test the behavior
● Production data was too massive for some (rarely

used) RPC call
● RPC call was triggering cache population which was

failing on retries
● Too many RPC calls to the data store made all other

queries to datastore slow

Development scenario #4: scalability, latency, fault tolerance

Summary

Summary

● Building Google-scale systems is hard

Summary

● Building Google-scale systems is hard
● Reuse at all levels

○ Domain knowledge
○ Requirements
○ Framework-level solutions
○ Processes
○ Code
○ ...

Summary

● Building Google-scale systems is hard
● Reuse at all levels

○ Domain knowledge
○ Requirements
○ Framework-level solutions
○ Processes
○ Code
○ ...

● Reuse comes at a cost

Summary

● Building Google-scale systems is hard
● Reuse at all levels
● Reuse comes at a cost
● Documenting design decisions is necessary to

○ Communicate proposed changes
○ Understand the impact
○ Understand the tradeoffs

Summary

● Building Google-scale systems is hard
● Reuse at all levels
● Reuse comes at a cost
● Documenting design decisions is necessary to

○ Communicate proposed changes
○ Understand the impact
○ Understand the tradeoffs

● Developers regularly propose system changes that impact other components and
systems

○ We are still missing tools/processes to ensure these are understood well in advance
■ Post mortems - learning from mistakes
■ No public shaming, goal is success of the project

○ Every developer must have architecture-level knowledge to be successful

How has software engineering evolved over the past 12 years @Google

● We are still far from developing software by simply connecting components
○ But we are building way more complex systems
○ Keeping up with the scale

How has software engineering evolved over the past 12 years @Google

● We are still far from developing software by simply connecting components
○ But we are building way more complex systems
○ Keeping up with the scale

● Moore’s law has really enabled Google’s growth

How has software engineering evolved over the past 12 years @Google

● We are still far from developing software by simply connecting components
○ But we are building way more complex systems
○ Keeping up with the scale

● Moore’s law has really enabled Google’s growth
● Visionary investment in

○ Computing power (datacenters)
○ Infrastructure (e.g,. Borg, Piper, …)

How has software engineering evolved over the past 12 years @Google

● We are still far from developing software by simply connecting components
○ But we are building way more complex systems
○ Keeping up with the scale

● Moore’s law has really enabled Google’s growth
● Visionary investment in

○ Computing power (datacenters)
○ Infrastructure (e.g,. Borg, Piper, …)

● Balancing enginnering freedom and top-down structure
○ Significant reduction in effort duplication

How has software engineering evolved over the past 12 years @Google

● We are still far from developing software by simply connecting components
○ But we are building way more complex systems
○ Keeping up with the scale

● Moore’s law has really enabled Google’s growth
● Visionary investment in

○ Computing power (datacenters)
○ Infrastructure (e.g,. Borg, Piper, …)

● Balancing enginnering freedom and top-down structure
○ Significant reduction in effort duplication

● Continuous investment in technical debt

How has software engineering evolved over the past 12 years @Google

● We are still far from developing software by simply connecting components
○ But we are building way more complex systems
○ Keeping up with the scale

● Moore’s law has really enabled Google’s growth
● Visionary investment in

○ Computing power (datacenters)
○ Infrastructure (e.g,. Borg, Piper, …)

● Balancing enginnering freedom and top-down structure
○ Significant reduction in effort duplication

● Continuous investment in technical debt
● Significant investment in developer education

○ Codelabs, classes, training

Thank You!
Q&A

