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Background

● Ph.D. in Software Engineering in 2004
○ Software architecture
○ System deployment and adaptation

● @ Google for ~12 years
● Worked on several projects within Ads
● Managing since 2008
● My team

○ 27 engineers
○ 3 statisticians
○ 10 linguists
○ PM



Google by the numbers

● ~50,000,000,000 - The number Android app downloads
● ~1,000,000,000 - The number of active Android users 
● ~500,000,000 - The number of active gmail accounts 
● ~5,000,000 - The amount of miles Google cars have driven 

to acquire map information for Project Truth
● ~4,000,000 - The amount of queries Google receives per min 
● ~1,300,000 - The number of apps in the Google Play Store
● ~840,000 - The amount of miles Google self-driving cars 

have driven to date
● ~90 - The number of languages supported by Google 

Translate
● 1 - The Google user experience



One Google experience
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Many systems work together and produce a single, coherent 
result within hundreds of milliseconds!
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Explosive computational requirements

● Growing in many dimensions
○ More users, use more
○ More data

■ web pages, videos, ads, mailboxes, 
blogs, etc.

○ Better quality
■ more relevant, faster response, 

“understanding user intent”



Google DC in  1999



Google DC today



How do we build Google systems?

Need to balance:
● Simplicity

● Features

● Platform transparency

● Latency

● Scalability
● Fault-tolerance
● Reliability
● Evolvability
● Availability
● ...



Development scale

Billions of 
LOC

~20K active 
developers

~100K daily 
changes to 
code repository



Reuse to the rescue - Google technology 
stack



Google technology stack (selected subset)

● Common data language
● Common RPC mechanism 
● Data storage solutions

○ Bigtable
○ Spanner
○ Colosus (GFS++)

● Processing pipelines
● GUI frameworks
● Logging
● Logs processing
● Testing
● Monitoring/Alerting
● Deployment
● Runtime evolution
● ….



Message passing

● Protocol buffers
● Language neutral construct for serializing structured data

message SearchRequest {

  required string query = 1;

  optional int32 page_number = 2; // Which page number do we want?

  optional int32 results_per_page = 3; // Number of results to return per page.

}

● Enables exchange of data among Google components or systems - lingua franca
● ~50K different message types in Google code tree across ~12K .proto files
● Used in RPC communication and for persistent storage of data



Stubby (gRPC)

● Extends the .proto files with 
definition of services (http://www.
grpc.io)

● Services define inputs and outputs 
in terms of .proto messages

● Enables any two Google 
components written in any 
language to communicate

● Forms the “microservice 
architecture” paradigm

// The query service definition.

service QueryService {

  // respond to search

  rpc Search(SearchRequest) returns (SearchReply) {}

}

// The request message with the query string.

message SearchRequest {

  required string query = 1;

}

// The reply message with the search and ad results

message SearchReply {

  repeated SearchResult result = 1;

  repeated AdResult ad_result = 2;

}

http://www.grpc.io
http://www.grpc.io
http://www.grpc.io


Common storage platform - Bigtable

● Database service powering many 
Google systems (search, analytics, 
maps, gmail, ...)

● Highly scalable
○ sparsely populated table that can scale 

to billions of rows and thousands of 
columns, petabytes of data

● Rows indexed - ideal for single key 
data and very low latency

● Availability and reliability through 
redundancy/replication

● High read/write low latency rates
● Ideal for Mapreduce operations



Common logging and log processing

● Reusable constructs for logging system behavior
● Log processing framework for extracting 

information from the logs
● Common components for data sampling and 

aggregation
● Data access security 

123.45.67.89 - 25/Mar/2002 10:15:32 -

http://www.google.com/search?q=cars -

Firefox 1.0.7; Windows NT 5.1 - 

740674ce2123e969



Data processing

Dataflow systems are commonly needed at Google
● Reusable components for dataflow processing
● Processing organized into stages
● At each stage there is some “worker type” binary that consumes work from 

previous stages and produces some output data
● Guarantees all work is executed exactly once or reflected in the current system 

state
● Multiple instances of given worker type can be self-scheduled and grab 

applicable work
● Resilient to intermittent failures (worker does not “consume” task until it 

succeeds)



Testing support at Google

● TAP - for fast (unit) tests
○ runs all affected unit tests on every change 

sent for review
○ reports status on CL

● GUITAR - Google Unified Integration Testing 
and Releasing
○ longer tests
○ tests that require a lot of setup
○ tests that may require a lot of resources



Deployment - Borg

● System for distribution of jobs and 
tasks within a machine cluster

●  Hides the details of resource 
management and failure handling 

● Operates with very high reliability and 
availability, and supports applications 
that do the same

● Assigns jobs to machines while 
satisfying resource 
constraints/requirements



Common monitoring and alerting

● Varz: common libraries to track the state 
of the system

○ E.g., number of queries

○ Can monitor state of single task or multiple 
replicas

● Borgmon
○ System and rules to monitor interesting 

(combinations of) the variables
○ Automatic dashboard generation

● Alert manager to escalate when defined 
rules trigger

● Metamon - monitoring borgmon



Ads Server

Controlled system evolution - experiment framework

Google Web Search

Ads Server 
V1

Ads Server 
V2

E
X
P
T

● Divert small portion of end user traffic to the new version
● Measure effect of a change before it is rolled out to everyone



SWE organization 



SWE Organization at Google 

● Google systems are organized into Product Areas



YT ads

Display Ads
(AdWords)

SWE Organization at Google 

● Within each PA, there are multiple products
○ Search ads
○ Product listing ads
○ Display ads
○ YT ads
○ ...

● Within each product, there are many projects/teams
○ SmartAss
○ AdsUI
○ ...

Product Area (Ads)

SearchAds

AdsUISmartAss



Team roles

● TLs
○ In charge of large project or several medium-size projects
○ Plan work for the team (objectives -> design)
○ Guide more junior engineers
○ Approve designs by more junior engineers

● TLM
○ In charge of multiple projects, manages 1+ teams (5 in my case)
○ Sets project direction and also manages people
○ Works across the organization to plan and execute work

● PMs
○ Works with TL/Ms from all relevant teams  to develop product direction

● Engineers
○ Junior: works on many tasks designed by more senior team members
○ Senior: owns larger parts of project from design to delivery

● Statisticians, Linguists, …



SWE Organization at Google - Team 

● Team objectives are planned yearly and quarterly
○ Prioritize (risk/opportunity assessment)
○ Binary vs incremental

● Multiple teams typically share objectives
● Regular iteration schedule

○ Check in on objectives
○ Communicate the status of previous iteration

○ Plan next iteration of work 
(design/development/testing/releasing/monitoring)

● Daily stand-up meeting



SWE Organization at Google - Team 

● Team process needs to continuously adapt to
○ Team structure (new eng vs attrition)
○ Project scope/complexity
○ Inter-project dependencies
○ Project deadlines
○ Available resources

● Always re-examine the current state
○ What is working well and what is not
○ What are the risks

● Who participates in what phase of the process
○ Efficiency (can you effectively brainstorm with 10 people)

● Communication
○ Within team and across teams

● Team structure
○ One big team vs. several smaller teams



Development process at Google



Development process at Google 

● Prototype-launch-measure-improve
● Requirements

○ Derived from strategic objectives

■ Cascaded to projects and specific objectives within a 
(set of) project(s)

○ Non-functional requirements
■ Derived from measuring current state

○ Driven by the infrastructure changes
■ E.g., migration to new storage platform

Improve   Launch

Prototype

Measure



Architecture/Design

● Capture at different levels how requirements will 
be met

● Heavily influenced by Google scale and available 
infrastructure/components

● Heavily influenced by non-functional requirements
○ Scalability
○ Latency
○ Fault-tolerance

● Frequently involve back-of-the envelope 
calculations

○ How much data, QPS, CPU,....

● No project should be scheduled for implementation 
if it does not have a design

○ Schedule design/prototype work first



Architecture/Design

● High level view
○ Architecture diagram, highlighting new/changed/removed 

components

● What are the major components, and how do they 
interact? 

● What are the inputs and outputs? 
● What changes to the existing system/components 

are needed
● What is the underlying data model, why is it 

structured that way
● How much data?
● Other non-functional properties?
● Rollout plan



Production readiness

● Resource requirements
○ Only theoretically unlimited computational resources
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Production readiness

● Resource requirements
○ Only theoretically unlimited computational resources

● Latency
● Availability
● Scalability 
● Traffic capacity 
● Load balancing
● Monitoring
● Alerting



Design and launch decisions

● Engineers make “smaller” design decisions
● TLs design systems
● Micro-scheduling of design reviews

○ Everyone can schedule them
○ Design review can become design tutoring
○ Within the team for smaller changes
○ With other teams/TL for any bigger/visible change

● What happens during design reviews
○ Flaws and unintended effects (hopefully) identified
○ Alternatives suggested
○ Selection of launch criteria

● Launch reviews
○ Data driven launch decisions
○ Security and privacy sign-off 



Some rules of design at Google

● Design document should be in sync with the implementation
○ New tools make it easier to require

● Feedback should be sought early and often
○ Design needs signoff from relevant stakeholders

● Prototype key elements to evaluate your design
● Understand design choices and limitations of existing components/systems
● Research existing solutions to similar problems
● Document tradeoffs and alternatives considered
● The Pareto principle (20-80)

○ What is good enough?



Design challenges

● Lots of data, lots of computing power
○ Low-level implementation details matter at scale

● Building products/features from reusable components should be fast
○ Reusable components focus on subset of common developer challenges

■ Designing around the component limitations is often hard

● Right design at X may be very wrong at 10X or 100X
○ Design for ~10X growth, but plan to rewrite before ~100X

● Understanding the impact of proposed changes is critical
● Balancing new features against technical debt



Tools Google engineers use daily

● Source control / changelists / version control



Tools Google engineers use daily

● Source control / changelists / version control
● Bug tracking systems



Tools Google engineers use daily

● Source control / changelists / version control
● Bug tracking systems
● Development process tracking tools (jira)



Tools Google engineers use daily

● Source control / changelists / version control
● Bug tracking systems
● Development process tracking tools (jira)
● An editor for programming



Tools Google engineers use daily

● Source control / changelists / version control
● Bug tracking systems
● Development process tracking tools (jira)
● An editor for programming
● One-touch build system
● Deployment tools
● Deployment monitoring tools
● Tons of documentation, codelabs
● Code search
● Test frameworks
● Code reviews, code review tools
● Email, email, email
● IM, hangouts



Implementation support at Google

● Code search
● Single code repository (Piper)

○ Many facets to make sure development 
     continues to scale

● Eclipse plug-ins for Google
● Powerful code review tool
● Automatic code checks

○ Style violations,
○ Testing breakages,
○ Test coverage, ...

● Submit queue
○ Ensures only approved code with all tests passing can be submitted

● Continuous builds/integration tests



Implementation workflow for Google engineers

● Start new jira story/task
● Checkout relevant code from repository
● Make the changes in your favorite editor
● Make it “work”!
● Add adequate logging to measure and report state
● Add/update tests to cover the functionality added/changed/removed
● Add/update release tests
● Run the tests and make sure they pass
● Update relevant documentation
● Create a CL (containing code, tests, and documentation changes)
● Self review the CL, cleanup
● Send for code review



Implementation workflow for Google engineers

● Code review - iterative process
○ change is automatically ran against the main branch
○ at least another pair of eyes, sometimes more
○ address comments

● Are you done?
○ Document release process
○ Follow up CLs

■ Update monitoring and alerting
○ See it through release



Release process

Pushmaster is a shared team responsibility (TLs, eng)
● Regular (e.g., bi-weekly) release schedule
● All relevant changes with test plans associated with the release documented
● Staging environment
● Push master builds and pushes to staging
● Push master tests all the new features
● Push master runs test plan
● Full automation of tests, eventually
● Push



Release process support

● Borg
○ Automatic management jobs/tasks across datacenters and machines

● Release tool - Rapid
○ Packages multiple binaries into single release package
○ Ensures all tests pass
○ Automatic deployment to staging environment
○ Non-automated tests executed in staging
○ Deployment to production  



Monitoring and alerting

● Google engineers assume things will fail
○ Processes, machines, DCs

● Provide appropriate alerting in each case
○ Will Borg handle it or someone needs to know

● In case of alerts create playbook entries
○ On call engineer should know how to respond to alert

● Post-mortems for issues that were not anticipated
● On-call - shared responsibility (TLs, eng)

○ Makes sure systems behave
○ Responds to alerts
○ Makes it easier for next on-call
○ Full-time job for 1-2 weeks



Development Scenario #1
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message SearchRequest {

  required string query = 1;

  optional int32 page_number = 2; // Which page number do we want?

  optional int32 results_per_page = 3; // Number of results to return per page.

  required Location query_origin = 4;

}

● Any issues with this change?

Development scenario #1: adding a new field to the proto message



Backwards/forwards compatibility

● Components generating and reading the data must continue to “understand” 
each other

● Existing data needs to continue to be valid or needs to be backfilled 

● Common language comes with some limitations
● Understanding HOW components interact is required for making changes



Backwards/forwards compatibility

● Components generating and reading the data must continue to “understand” 
each other

● Existing data needs to continue to be valid or needs to be backfilled 

● Common language comes with some limitations
● Understanding HOW components interact is required for making changes

● Proto 3 removes handles backwards compatibility by removing optional/required 
and making all proto fields optional

● It is up to application logic to enforce/expect exact instance of proto fields



Development Scenario #2



Development scenario #2: debugging a live system

● Insufficient information about what I am trying to debug is logged
● I am going to add this small 1 line change and log what I need 
● I need to debug this quickly so I am just going to build the new binary with my 

change and push

● Any issues with this change?



● Assumed the only change being pushed is the 1 line change
● If the change was not “cherrypicked”, the developer might have picked additional 

changes that have not gone through the full release test process
● Untested changes might be anywhere

● Any other issues with this change?

Development scenario #2: debugging a live system



● How often is that 1 line change logged?
● How much information is being logged?
● Where does the logged information live?

○ Temporary logs (expire/get deleted regularly)
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● How often is that 1 line change logged?
● How much information is being logged?
● Where does the logged information live?

○ Temporary logs (expire/get deleted regularly)

● Even small changes can have big impact if they happen very frequently

Development scenario #2: debugging a live system



Development Scenario #3



Development scenario #3: scalability, latency, fault tolerance

● Replacing data storage component
● Substantial testing in “staging” environment
● Successful rollout to production
● 3 days later, lots of slowness, failures

● What happened?



● Replacing data storage layer
● Substantial testing in “staging” environment
● Successful rollout to production
● 3 days later, lots of slowness, failures

● Staging data not big enough to test the behavior
● Production data was too massive for some (rarely 

used) RPC call
● RPC call was triggering cache population which was 

failing on retries
● Too many RPC calls to the data store made all other 

queries to datastore slow

Development scenario #4: scalability, latency, fault tolerance
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Summary

● Building Google-scale systems is hard
● Reuse at all levels
● Reuse comes at a cost
● Documenting design decisions is necessary to

○ Communicate proposed changes
○ Understand the impact 
○ Understand the tradeoffs

● Developers regularly propose system changes that impact other components and 
systems

○ We are still missing tools/processes to ensure these are understood well in advance
■ Post mortems - learning from mistakes
■ No public shaming, goal is success of the project

○ Every developer must have architecture-level knowledge to be successful 
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How has software engineering evolved over the past 12 years @Google

● We are still far from developing software by simply connecting components
○ But we are building way more complex systems
○ Keeping up with the scale

● Moore’s law has really enabled Google’s growth
● Visionary investment in 

○ Computing power (datacenters) 
○ Infrastructure (e.g,. Borg, Piper, …)

● Balancing enginnering freedom and top-down structure
○ Significant reduction in effort duplication

● Continuous investment in technical debt
● Significant investment in developer education

○ Codelabs, classes, training





Thank You!
Q&A


