Alexander Egyed University of Southern California (USC) Sponsors: DARPA/EDCS, USAF/IFTD, and USC-CSE Affiliates © Alexander Egyed (University of Southern California) 1 ### **Models and Diagrams** - Views model (stakeholders) concerns - Many software development models exist – many concerns can be modeled - Different views for different audiences - Diagrammatic and textual views - Independent but connected - Going from architecture to design and back © Alexander Egyed (University of Southern California) 2 ## **Comparison Rules** ### **Concrete relation has no corresponding abstraction:** \forall r \in relations, is_abstraction(r) \land is interpretation(r) \Rightarrow realization(r) \neq NULL ### **Cardinality of refinement does not match abstraction:** \forall r \in relations, has_realization(r) \land is_abstraction(r) \land (type(r) = association) \land (type(realization(r)) = association) \Rightarrow cardinality(r) = cardinality(realization(r)) #### **Abstract classifier has not been refined:** \forall c \in classifiers, is_realization(c) \land is_refineable(r) $\Rightarrow \exists$ ic \in c->interpretations, is abstraction(ic) © Alexander Egyed (University of Southern California) 5 # **Conclusion** - Model-based development improves complexities of large scale systems (separation of concerns) - Models are independent but related a major strength but also a major weakness - We proposed two concepts on how to reduce error-prone, manual, and repetitive development going from architecture to design - Our approaches are tool supported © Alexander Egyed (University of Southern California) 7