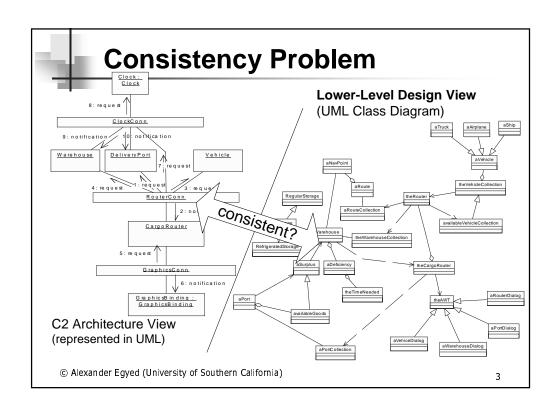


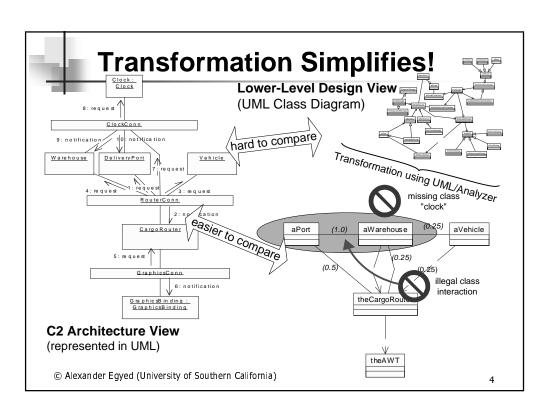
Alexander Egyed

University of Southern California (USC)

Sponsors: DARPA/EDCS, USAF/IFTD, and USC-CSE Affiliates

© Alexander Egyed (University of Southern California)


1


Models and Diagrams

- Views model (stakeholders) concerns
- Many software development models exist – many concerns can be modeled
- Different views for different audiences
- Diagrammatic and textual views
- Independent but connected
- Going from architecture to design and back

© Alexander Egyed (University of Southern California)

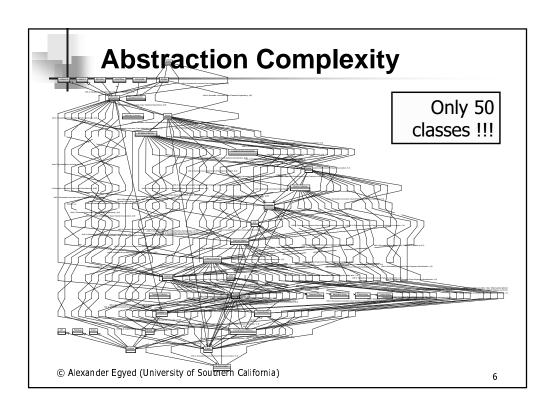
2

Comparison Rules

Concrete relation has no corresponding abstraction:

 \forall r \in relations, is_abstraction(r) \land is interpretation(r) \Rightarrow realization(r) \neq NULL

Cardinality of refinement does not match abstraction:


 \forall r \in relations, has_realization(r) \land is_abstraction(r) \land (type(r) = association) \land (type(realization(r)) = association) \Rightarrow cardinality(r) = cardinality(realization(r))

Abstract classifier has not been refined:

 \forall c \in classifiers, is_realization(c) \land is_refineable(r) $\Rightarrow \exists$ ic \in c->interpretations, is abstraction(ic)

© Alexander Egyed (University of Southern California)

5

Conclusion

- Model-based development improves complexities of large scale systems (separation of concerns)
- Models are independent but related a major strength but also a major weakness
- We proposed two concepts on how to reduce error-prone, manual, and repetitive development going from architecture to design
- Our approaches are tool supported

© Alexander Egyed (University of Southern California)

7