
Challenges in Implementing Software Architectures
Marija Rakic Nikunj Mehta

{marija, mehta}@sunset.usc.edu
Department of Computer Science
University of Southern California

Los Angeles CA 90007

Background

C2 is a component and message based architectural style. The key ideas for C2 came from the
experience with Chiron-1 user interface system and other styles (Unix pipe-and-filter, blackboard,
etc). The most important elements of the C2 style are components and connectors [1]. In
particular, the style requires that components cannot directly interact with other components, but
must do so via connectors. C2 treats connectors as first class entities, but supports a small number
of connector types, mainly message passing and implicit invocation.

Figure 1 shows the object-oriented framework we designed for developing architecture
implementations in the C2 style. The C2 framework has so far been implemented in variety of
programming languages (C++, Java, Ada, Python) and is being evolved for use on embedded
devices. This base framework has been extended to provide inter-process communication through
the use of various middleware technologies [3].

C2Notification

C2Request

C2Message

C2Port

C2ConnectorThread

C2Connector

C2ComponentThread

C2Architecture

C2Component

C2Brick

C2Object

Figure 1 Object Oriented Framework
supporting C2 architecture implementation

Notification

Request

Message

ConnectorThread

Connector

ComponentThread

Component

Architecture

Brick

Object

Figure 2 Modified object-oriented C2
framework

Improving the Implementation Infrastructure

The object-oriented framework in Figure 1 has been used to develop various applications
intended to demonstrate the feasibility of architecture-based software development according to
the rules of C2. We have used these experiences to evaluate the framework and determine its
limitations. An extensive analysis of the framework indicated that ports, which handle message

queues for each architectural block, are not required as first-class entities and tend to lose their
significance once an architecture is refined into a design and/or implementation. On the other
hand, the C2 connectors, which were treated as solely message carriers, are now looked at as
being more integral means of interaction between components, including security, fault-tolerance,
and distribution.

Figure 2 shows a simplification and improvement to the framework to support more types of
interaction and a more meaningful transition from architecture to implementation. The main
changes to the original framework are that Architecture is derived from a Brick instead of a
Component, thus allowing the connectors to have arbitrarily complex internal architectures, and
that the Ports are no longer explicit entities in the implementation. Our initial studies suggest that
the modified framework preserves the original framework’s flexibility, while improving
application performance and reducing size. At the same time, further study is needed to help us
determine what architectural elements are most useful from both a theoretical and a practical
point of view.

The current C2 framework only supports the broadcast of simple messages to all attached
components in the architecture. However, many practical systems involve the direct interaction
between components and require large amounts of structured data to be communicated. To
address this problem we have restructured the framework to support composition of complex
connectors. We have developed taxonomy of software connectors to understand the gamut of
component interactions [4]. This taxonomy also indicates the areas where C2 is weak in
providing component interactions, such as security, transactions, message distribution, stream
based communication, etc. Although messages form the bulk of component interactions,
inefficiencies such as message cloning for dispatch and message broadcast affect the system
performance significantly. In order to provide a richer set of component interactions, we are
implementing a message distribution connector similar to data transfer in a network. We have
also begun implementing security connectors, multi-way procedure calls, and system gauges.

The Big Picture

Apart from the need to have functional elements in the architecture, it is necessary to ensure
that an architectural framework is flexible and efficient. This issue has become more prominent
as we have attempted to apply the C2 style to embedded systems and handheld computing. The
question we are facing is: What is the right balance between framework efficiency and flexibility?
Our argument is that, as researchers, a primary goal is to explore the unchartered and hence the
uncertain. Architectures are haute, but to make them more useful, we have to provide innovative
services that go beyond the normal primitives. In the past new primitives such as RPC, threads
and callbacks were identified through experimentation and these concepts have been extended
over time into more powerful and less expensive frameworks (e.g. the evolution of DCE RPC to
CORBA and now to Java RMI). The architecture community should therefore push forward on
providing infrastructure to conduct research that concocts new primitives and provides means to
handle increasing complexity of software. Simultaneously, we should work on optimizing the
implementation of architectural constructs by simplifying the implementation frameworks and
transforming architecture constructs into efficient code modules. Computer systems research (e.g.
distributed systems, networking) can be used as a starting point for identifying new architectural
elements.

The purpose of software architecture frameworks is to support the development of software in
a disciplined manner so that architecture descriptions can be converted to real systems.
Architecture-based development should lead us to a discipline based on handbooks, guides and
standards rather than the current choice between intuition and cryptic math that only a few can
understand. The average developer is not likely to use tools to prove architectural properties as
much as using infrastructures to build systems and handbooks that provide guidance to designing

solutions based on already proven architectures. This paper has discussed such an infrastructure
that software developers can employ in implementing systems. The key property of the
infrastructure is its preservation of architectural constructs and characteristics in a system’s
implementation. We are continuously investigating techniques to minimize the costs (size,
performance, flexibility) incurred by the use of the explicit architectural constructs. One such
technique has already resulted in a simplification and optimization of the infrastructure.

References:
[1] Taylor et al., A Component- and Message-Based Architectural Style for GUI Software. IEEE

Transactions on Software Engineering, June 1996.
[2] Taylor et al., Chiron-1: A Software Architecture for User Interface Development,

Maintenance, and Run-Time Support, ACM Transactions on Computer-Human Interaction,
June 1995.

[3] Dashofy, Medvidovic and Taylor, Using Off-The-Shelf Middleware to Implement
Connectors in Distributed Software Architectures, Proceedings of ICSE 99, May 1999.

[4] Mehta, Medvidovic and Phadke, Towards a Taxonomy of Software Connectors, Proceedings
of ICSE 2000, June 2000 (to appear).

