
Putting Formal Description of Software Architecture

in Practice: Good News, Bad News.

Paola Inverardi

Dipartimento di Matematica Pura ed Applicata, AREA INFORMATICA

Universit�a dell'Aquila , Via Vetoio, 67100 L'Aquila, Italy

Tel. +39 0862 433127, Fax +39 0862 433180,inverard@univaq.it

Since a few years the research group in L'Aquila has been carrying on work in the �eld of

architectural design. Our �rst activity has been to face the problem of formally de�ning an SA

description. In this context the use of a rewriting-based speci�cation language, the Chemical

Abstract Machine, already known in the literature, to describe software architectures has been

proposed [7, 8]. There were several reasons to attack the problem of suitably describing Software

Architectures with a formal approach. Software Architectures exhibit both static and dynamic

features, have to be described at a high level of abstraction, and must be comprehensible to a variety

of users who have di�erent educational background and di�erent goals. All these requirements

suggest Software Architecture descriptions must be precise, non ambiguous, general, abstract and

expressive. On the other hand, since SA description have to be as abstract and concise as possible,

the SA �eld seemed to be a good benchmark on which formal techniques might show their usefulness

as opposed to the speci�cation �eld, in which the scaling up problem blocked, de facto, the use

of formal techniques in real world projects. Our approach has been shown to be quite e�ective

in terms of veri�cation and analysis of software architecture properties, both behavioral [7, 8] and

quantitative [5, 6, 3]. Recently, the architectural description have been used to derive or to retrieve

information useful to devise integration testing plans [1, 2]. In all these cases we could rely on a

formal SA description that we developed, in one of the above cases we dealt with a real case study,

that is the SA description of a system we speci�ed was then used to design the actual system

implementation in a standard re�nement development strategy. As a matter of fact all the system

descriptions we worked on were quite small and could be easily formally analyzed both algebraically

and through model checking techniques.

Since a couple of years we got involved in joint projects with three di�erent telecommunications

companies, in all the projects we were asked to work on the SA description of (part of) one of their

product system. We started then experiencing reverse engineering problems. All our customers

wanted as ultimate goal to achieve a clear and e�ective SA description in order to conduct predictive

analysis and evaluation of the architectural choices. In most cases their primary interest was in

predicting system performance behavior. One of them was also interested in evaluating and measure

changes impact on the architectural design. Another was also interested in obtaining a complete

and clear documentation of the system.

The �rst problem we had to face in these cases was the choice of the ADL. We never thought of

using formal ADLs, either Cham or others, mainly for a problem of standard maturity. We decided

to use UML [15, 16] as our driven technology. There are several motivations for this choice. The

�rst one is that we had to use a standard and tool supported set of notations to carry out the

documentation phase. The second is that several authors used it in architectural descriptions even

for large systems [12, 13, 14]. Last but not least, for the environments we were referring to the use

of UML was already a big deviation step from their standard developing process.

1



All the systems we dealt with are event{based telecommunication systems, written in propri-

etary languages. The peculiarity of this kind of systems is that the most complex part of their

model understanding deals with the dynamics as opposed to the static system structure. From a

static structural point of view the source code is rather simple in terms both of internal control 
ow

and of data structures complexity. On the contrary the components interactions can be extremely

complex and deeply intertwined with operating systems and hardware communication protocols.

UML has been used to model the static description (using stereotyped Class diagrams) and

components interactions (using Sequence and State Diagrams). Obviously this showed to be quite

unsatisfactory with respect to the dynamic modeling. In one case, we tried to introduce besides

UML, formal descriptions as well. We were in fact interested in predictive performance analysis

and we were trying to apply our approach [6, 3] for the derivation of performance model. This

approach requires the construction of the global system �nite state model. We used a Labelled

Transition System (LTS), based on the FSP [10, 9] speci�cation, generated using the LTSA tool

[11]. This modeling technique although useless to analyze the system global behaviour (due to

state explosion) resulted in an interesting tool to analyze subsystem behaviour. To overcome the

state explosion problem we are de�ning a way to get the information needed for the performance

model out of a set of sequence diagrams enriched by state information retrieved from the single

component state diagram [4].

Summarizing on our experience, we are interested in discussing the role of formal SA descriptions

in real projects as it can be realistically proposed nowadays. We believe that standard techniques

should be used to the maximum extent and that formal techniques should be coherently combined

with them.

References

[1] A. Bertolino, P. Inverardi, H. Muccini, A. Rosetti. An Approach to Integration Testing Based

on Architectural Descriptions. IEEE Proc. ICECCS-97, Como 1997.

[2] A. Bertolino, F. Corradini, P. Inverardi, H. Muccini. Deriving Test Plans from Architec-

tural Descriptions. To appear on Proc. 22nd Int. Conf. on Softw. Eng. (ICSE2000), Limerick

(Ireland), June 4th-11th, 2000.

[3] F. Aquilani, S. Balsamo, P. Inverardi. An Approach to Performance Evaluation of Software

Architectures Internal Report Universita' dell'Aquila, Marzo 2000, submitted for pubblication

[4] F. Andol�, F. Aquilani, S. Balsamo, P. Inverardi. Deriving QNM from MSCS for Performance

Evaluation of Software Architectures Internal Report Universita' dell'Aquila, Aprile 2000,

submitted for pubblication

[5] S. Balsamo, P. Inverardi, C. Mangano, F. Russo. Performance Evaluation of a Software

Architecture: A Case Study. IEEE Proc. IWSSD-9, April 1998, Ise-Shima, Japan.

[6] S. Balsamo, P. Inverardi, C. Mangano, Performance Evaluation of Software Architectures.

ACM Proc. WOSP, Santa Fe, New Mexico 1998.

[7] P. Inverardi and A.L. Wolf. Formal Speci�cations and Analysis of Software Architectures

Using the Chemical Abstract Machine Model. IEEE Transactions on Software Engineering,

21(4):100{114, April 1995.

[8] D. Compare, P. Inverardi and A. L. Wolf. Uncovering Architectural Mismatch in Component

Behavior. Science of Computer Programming (33)2 (1999) pp. 101-131.

[9] Magee,J. and Kramer, J. Concurrency: State Models and Java programs, Wiley Pub. 1999.

2



[10] Finite State Processes (FSP) on line at: "http:

www-dse.doc.ic.ac.uk/jnm/book/ltsa/Appendix-A.html"

[11] Labelled Transition Systems Analyzer (LTSA) on line at: "http:

www-dse.doc.ic.ac.uk/jnm/book/ltsa/LTSA.html"

[12] Jason E. Robbins, Nenad Medvidovic, David F. Redmiles and David S. Rosenblum. Integrating

Architecture Description Languages with a Standard Design Method. Proc. 20th Int'l Conf.

on Software Engineering Apr. 1998, pp. 209-218.

[13] C. Hofmeister, R.L. Nord and D. Soni. Describing Software Architecture with UML. 1st

Working IFIP Conference on Software Architecture (WICSA1), pp. 145{159, San Antonio,

Texas Berlin, Germany, 22-24 February 1999.

[14] C. Hofmeister, R.L. Nord and D. Soni. Applied Software Architecture Addison-Wesley, Octo-

ber 1999.

[15] Rational Corporation. Uml Resource Center. UML documentation, version 1.3. Available from

"http://www.rational.com/uml/index.jtmpl".

[16] I. Jacobson, G. Booch and Rambaugh. The Uni�ed Software Development Process. Addison

Wesley publiser.

3


