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Software products will continue to be built from independent, heterogeneous components
distributed across a network with the goals of increasing reusability and decreasing time to
market. Software architecture research has been instrumental in facilitating descriptions of the
components of these systems [ALL97, MDEK95, SG96], along with producing generic
development methods [BOE99, JBR99] and specific analysis techniques such as determining
COTS product suitability and integration constraints [PKG99, YBB99].

One major consideration in these component-based systems is their use of middleware; a
variety of distributed computing services and application development environments which
operate between the application logic and the underlying system [CHA99]. Employing a
commercially available middleware product, such as CORBA, DCOM, Java RMI, or MQSeries
Integrator, is commonly thought to be an easy solution to resolving interoperability problems
among heterogeneous components. However, due to the complexity of middleware products,
implementation of an integration solution may be time and resource intensive. In addition,
evolving a middleware product may require the assistance of an expert consultant or vendor, or
even changing products altogether.

Research trends in software architecture are emerging to address some of the issues
surrounding middleware that form the foundation for our research. For instance, the influence of
software architecture characteristics on middleware choices [KG99] and vice versa [DIN99] has
led to a deeper understanding of the interplay between the design of the system and the need for,
and subsequent performance of, its middleware.

Reports on failed integration experiences [BAY98] warrant a way to first identify the
middleware framework to resolve interoperability conflicts, followed by choosing a product that
implements the desired framework according to traditional criteria, such as cost, vendor
reputation, and familiarity with the product. Even better is a method by which to plan for
middleware as part of the design of the integrated system and the choice of reusable components.
This is the direction in which our research is proceeding.

Our research involves defining an analysis approach that allows the system developer to
plan for middleware during the system design. One challenge to developing such a plan is to
separate the intricate functionality of the disparate middleware frameworks. In most cases, the
full integration capabilities are not even needed, but what to use or what to ignore within a
product often must be determined by vendor consultants, as opposed to software developers.
Specifically, questions such as the following need to be answered:

• Is a particular middleware framework/product well suited to the system needs?
• Can the middleware perform as expected given its requirements and the system’s

requirements?
• How are the middleware choices influenced by the system requirements, the

architecture of the overall system, and the participating components?

Our approach is based on providing consistent descriptions across middleware
frameworks to facilitate analysis of their reusability, flexibility, evolvability, and interoperability.
Our previous research focused on identifying and modeling generic integration element
connectors and their common specializations for translation, control, and extension within the
core integration capabilities of middleware [KG98]. These integration elements are supplemental



to the standard architecture connectors defined for many architecture styles [SG96, AG97].

To broaden this research, we are developing a theory for composing integration elements
and standard architecture connectors into an integration architecture that specifies the solution
needed. As shown in Figure 1, the integration architecture should cover the main interaction
points and form the skeleton of the middleware. Hence, the objective is to capture and codify
middleware functionality by leveraging architecture concepts. The integration architecture must
both satisfy system requirements and be implementable by current/future middleware products.
Thus, we do not wish to produce solutions that are incongruous to current middleware products or
even to enforce a change in the current industry. Rather, we want to initiate within the design
process the consideration of middleware usage to facilitate later implementation. Finally, the
description of the integration elements and connectors should be such that an automated
composition is possible as a result of architecture and interoperability analysis. While we are not
tied to any ADL specifically, the proposed descriptions should be transformable.
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Figure 1: An Integration Architecture and its Relationship to Middleware

Our goal is to develop a principled approach using a combination of formal and semi-
formal methods of architecture specification. These descriptions allow guarantees that the
resulting integration architecture is correct at two levels. First, composition must maintain all
properties satisfied (and conflicts resolved) by the individual integration elements. Second, the
resulting architecture must satisfy the requirements of the integrated system application.
Unfortunately, the choice among solutions may depend on what other integration elements are
needed or the configuration/coordination requirements of the overall system. Two integration
architectures may be comprised of the same integration elements, but the way they are composed
influences their functionality [KPFG99]. This composition is partly impacted by the system
requirements and partly by characteristics of the participating components. Hence, a composition
theory is not as simple as accumulating the integration elements to resolve conflicts and then
directly combining them.

For example, assume that we have the two configurations of components as depicted in
Figure 2. The data representations of CS1, CS2, and CS3 are all distinct. This conflict requires a
translator (either unidirectional or bi-directional) for each comparison. In the first linear
configuration of the data topology, two unidirectional translators are needed to resolve the
representation conflict. This results in implementing middleware adapters. In the complete graph,
each of the three pairwise conflicts would result in its own bi-directional translator. However,
when composing the integration elements into an overall solution, the integration architectures
would be different. Here, a translator would likely be used to convert between the data
representations into an intermediate language. The intermediate representation would then be



translated to the appropriate receiver. In this case, a controller would be used to determine which
component system gets the translated information, therefore, requiring a broker framework.
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Figure 2: Two System Configurations of the Same Components

As a result of this research, we intend the design plan for middleware within a network
based application to be evolvable as the components change, to allow the developer to assess
trade-offs between frameworks and products, to provide an initial expectation of performance,
and to be reusable as similar integration efforts are performed. This requires advances in software
architecture-based development and description that will lead toward standardized assessment of
interoperability problems and the impact of architecture evolution on a component-based system.
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