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Special-purpose languages like ADLs [1] are very useful for modeling difficult and 
elusive concerns. ADLs provide a wide range of powerful and rigorous methods and 
frequently also support the analysis and simulation of problems or solutions. For general-
purpose modeling, using ADLs may sometimes be an overkill. We therefore believe that 
general-purpose models like the Unified Modeling Language (UML) [2] are useful 
complements to ADLs. UML was defined in such a manner that it can be understood by a 
large population of software developers and beyond. The unified nature and simplicity 
have made UML the leading object-oriented design language there is today. Further, 
UML design constructs map more easily to the actual source code of a system. To that 
end, UML provides a variety of views, such as class, object, sequence, activity, 
statechart, and use-case views. Those views span a wide range of concerns and support 
structural, behavioral and scenario modeling.  

In [3], we have investigated the issue of architecture to design integration in the context 
of the C2 ADL [4] and the Unified Modeling Language (UML). There, we discussed how 
to transform C2 architecture descriptions into (high-level) UML designs. Since designs 
are refinements of architectures and those designs are likely further refined into lower-
level designs (and implementations), they could become inconsistent over time. This is 
particularly likely if refinements are done manually.  

Figure 1 depicts a simple scenario of a part of a cargo routing application. The top-most 
row shows two architectural components of that cargo router, called Port and Warehouse. 
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Figure 1. Consistency Checking between Architecture and Design Elements 



The link between Port and Warehouse indicates that Warehouse accesses services 
provided by Port. The bottom-most row shows a design that is supposed to implement 
above architectural specifications. The design describes the relationships between the 
four design elements aPort, availableGoods, aSurplus, and aWarehouse using UML 
class diagram concepts. 

In our work on view integration [5], we have shown techniques on how to ensure the 
consistency between diagrams. As such, we have investigated ways of describing and 
identifying the causes of modeling inconsistencies across UML and architectural views 
and have created a view integration framework, accompanied by a set of activities and 
techniques, for identifying inconsistencies in an automatable fashion. Our framework 
makes use of intermediate models into which diagrams are converted. Those intermediate 
models are usually generated via transformation methods. Figure 1 (middle rows) shows 
two intermediate models that were automatically generated by abstracting the design 
(bottom) via our UML/Analyzer tool. The details of our transformation method are not 
relevant here and can be found in [6]. What is relevant here is how the transformation 
results (derived model elements) relate to the user-defined model elements of the design 
and architecture. In particular we are interested in the realization/interpretation traces that 
were generated between the highest abstraction of the design and the architecture. Based 
on those traces, we can find inconsistencies. 

Figure 2 depicts two (in)consistency rules. The rules describe conditions, if violated, 
indicate inconsistencies. For instance, the first rule states that if a relation is an 
interpretation (derived via transformation) and that relation has been generated via an 
abstraction method (thus is an abstraction) then this relation must have a realization. In 
Figure 1, we have only one relation that is both an interpretation and an abstraction, and 
that relation is “abc.” The relation “abc” is an interpretation of the design and it was 
abstracted from the design. Since that relation also has a realization (the relation from 
Warehouse to Port on the architecture level), there is no inconsistency of this type in the 
figure. 

The second rule states that if there is a realization that is also an interpretation, an 
abstraction, and has a realization then the realization of the destination of that relation 
must be same as the destination of the realization of that relation. In Figure 1, the relation 
“abc” is an interpretation, an abstraction, and has a realization. However, the destination 
of “abc” (aWarehouse) and its realization (Warehouse) is not equal to the realization of 
“abc” (arrow on architecture level) and its destination (Port). The violation of that rule 
indicates an inconsistency in that the direction of the concrete relation does not match the 
direction of the abstract relation. Since the concrete relation is part of the design and the 
abstract relation is part of the architecture, an inconsistency between the architecture and 
design is found. 

Concrete relation has no corresponding abstraction:
∀ r ∈ relations, is_interpretation(r)∧ is_abstraction(r)⇒
realization(r)≠ NULL

Direction of concrete relation does not match abstraction:
∀ r ∈ relations, is_interpretation(r)∧ is_abstraction(r)∧
realization(r)≠ NULL ⇒ realization(destination(r)) =
destination(realization(r))  

Figure 2. Consistency Rules between Abstraction and Refinement 



Above example showed how transformation and analysis can help in identifying 
inconsistencies among abstractions and refinements. Without consistent refinement, the 
effort spend in creating, analyzing, and simulating architectural specification would be 
wasted since only consistent refinement can guarantee that proven architectural properties 
(such as security, reliability, and performance) have actually been implemented correctly. 
In our work on view analysis, we have described 20 types of inconsistencies that can 
happen between an abstract model and a concrete model. Using our abstraction methods 
as well as our consistency rules, inconsistencies between architecture and design can be 
identified in a more automated fashion.  
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