Validating Consistency between Architecture and Design
Descriptions

Alexander Egyed
Computer Science Department
Universty of Southern Cdifornia
Los Angeles, CA 90007, USA
aegyed@sunset.usc.edu

Specia- purpose languages like ADLs[1] are very ussful for modding difficult and
elusve concerns. ADL s provide awide range of powerful and rigorous methods and
frequently aso support the andyss and smulation of problems or solutions. For generd-
purpose modding, usng ADLs may sometimes be an overkill. We therefore believe that
generd-purpose modds like the Unified Moddling Language (UML) [2] are ussful
complementsto ADLs. UML was defined in such amanner thet it can be understood by a
large population of software developers and beyond. The unified nature and smplicity
have made UML the leading object-oriented design language there is today. Further,
UML design congtructs map more easily to the actual source code of a system. To that
end, UML provides avariety of views, such as class, object, sequence, activity,
statechart, and use-case views. Those views span awide range of concerns and support
structurd, behaviora and scenario modding.

In [3], we have investigated the issue of architecture to design integration in the context

of the C2 ADL [4] and the Unified Modding Language (UML). There, we discussed how
to transform C2 architecture descriptionsinto (high-level) UML designs. Since designs
are refinements of architectures and those designs are likely further refined into lower-
level designs (ad implementations), they could become incongstent over time. Thisis
particularly likely if refinements are done manudly.

Figure 1 depicts asmple scenario of apart of a cargo routing application. The top-most
row shows two architectura components of that cargo router, caled Port and Warehouse.

Port - Warehouse

Architecture : K

aPort abc aWarehouse

A

aPort |._ @ | availableGoods bc aWarehouse

I\
!

A A A

N\ 7N PN N\
| | - N |

7/

aPort a | availableGoods b ,__| aSurplus c aWarehouse

Design <> >

Figure 1. Consistency Checking between Architecture and Design Elements




Thelink between Port and Warehouse indicates that War ehouse accesses services
provided by Port. The bottom-most row shows adesign that is supposed to implement
above architectural specifications. The design describes the relationships between the
four desgn dements aPort, availableGoods, aSurplus, and aWarehouse usng UML
class diagram concepts.

In our work on view integration [5], we have shown techniques on how to ensure the
consstency between diagrams. As such, we have investigated ways of describing and
identifying the causes of modding inconsstencies across UML and architecturd views
and have cregted a view integration framework, accompanied by a set of activities and
techniques, for identifying inconsstencies in an automatable fashion. Our framework
makes use of intermediate modes into which diagrams are converted. Those intermediate
modds are usualy generated via trandformation methods. Figure 1 (middle rows) shows
two intermediate modd s that were automatically generated by abstracting the design
(bottom) viaour UML/Andyzer tool. The details of our transformation method are not
relevant here and can be found in [6]. What is rdlevant here is how the transformation
results (derived modd elements) relate to the user-defined mode dements of the design
and architecture. In particular we are interested in the redlization/interpretation traces that
were generated between the highest abstraction of the design and the architecture. Based
on those traces, we can find inconsstencies.

Figure 2 depicts two (in)consstency rules. The rules describe conditions, if violated,
indicate inconsstencies. For ingance, the firgt rule sates thet if ardationisan
interpretation (derived viatransformation) and that relation has been generated viaan
abstraction method (thusis an abstraction) then this relation must have aredization. In
Figure 1, we have only one relaion that is both an interpretation and an abstraction, and
that reation is“abc.” Therdaion “aoc” isan interpretation of the design and it was
abgiracted from the design. Since that relation also has aredization (the relation from
Warehouse to Port on the architecture leve), there is no inconsstency of thistypein the
figure.

The second rule satesthat if thereisaredization that isaso an interpretation, an
abgiraction, and has a redization then the redlization of the destination of that relation
must be same as the destination of the redlization of thet rdaion. In Figure 1, the rlation
“abc” isan interpretation, an abstraction, and has a redization. However, the destination
of “abc” (aWarehouse) and its redization (Warehouse) is not equd to the redization of
“abc” (arrow on architecture level) and its destination (Port). The violation of thet rule
indicates an inconsstency in that the direction of the concrete relation does not match the
direction of the abstract relation. Since the concrete relation is part of the design and the
abdtract rdlation is part of the architecture, an inconsstency between the architecture and
design isfound.

Concrete relation has no corresponding abstraction:
"r 1 relations, is_interpretation(r)JJis_abstraction(r)p

realization(r)® NULL

Direction of concrete relation does not match abstraction: .
“"r | relations, is_interpretation(rlJis_abstraction(r)U
realization(r)* NULL b realization(destination(r)) =

destination(realization(r))

Figure 2. Consistency Rules between Abstraction and Refinement



Above example showed how transformation and analyss can help in identifying

incong stencies among abstractions and refinements. Without consstent refinement, the
effort gpend in creating, analyzing, and Smulating architectural specification would be
wagted since only consistent refinement can guarantee that proven architectural properties
(such as security, rdiability, and performance) have actudly been implemented correctly.
In our work on view anadys's, we have described 20 types of inconsstencies that can
happen between an abstract model and a concrete modd. Using our abstraction methods
aswell as our congstency rules, incons stencies between architecture and design can be
identified in amore automated fashion.

1. Medvidovic, N., and Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. |EEE Transactions on Software
Engineering, to appear, 2000.

2. G. Booch, I. Jacobson, and J. Rumbaugh, The Unified Modeling Language User
Guide, Addison-Wedley, 1998.

3. Egyed, A. and Medvidovic, N., “A Forma Approach to Heterogeneous Software
Modeling”, Proceedings of Foundationa Aspects of Software Engineering (FASE),
Berlin, Germany, 2000.

4. Taylor, R.N., Medvidovic, N., Anderson, K.N., Whitehead, E.J., Jr., Robbins, JE.,
Nies, K.A., Oreizy, P., and Dubrow, D.L.: A Component- and Message-Based
Architecturd Style for GUI Software. |EEE Transactions on Software Engineering,
vol. 22, no. 6, pp. 390-406, 1996.

5. Egyed, A. “Heterogeneous View Integration and its Automation,” to appear, Ph.D.
Dissartation, Center for Software Engineering, Universty of Southern Cdifornia, Los
Angeles, CA 90089-0781, USA, 1998

6. Egyed, A. and Kruchten, P. “Rose/Architect: atool to visualize software
architecture,” Proceedings of the 32"Y Annua Hawaii Conference on Systems
Sciences, 1999.



