
Validating Consistency between Architecture and Design
Descriptions

Alexander Egyed
Computer Science Department
University of Southern California
Los Angeles, CA 90007, USA

aegyed@sunset.usc.edu

Special-purpose languages like ADLs [1] are very useful for modeling difficult and
elusive concerns. ADLs provide a wide range of powerful and rigorous methods and
frequently also support the analysis and simulation of problems or solutions. For general-
purpose modeling, using ADLs may sometimes be an overkill. We therefore believe that
general-purpose models like the Unified Modeling Language (UML) [2] are useful
complements to ADLs. UML was defined in such a manner that it can be understood by a
large population of software developers and beyond. The unified nature and simplicity
have made UML the leading object-oriented design language there is today. Further,
UML design constructs map more easily to the actual source code of a system. To that
end, UML provides a variety of views, such as class, object, sequence, activity,
statechart, and use-case views. Those views span a wide range of concerns and support
structural, behavioral and scenario modeling.

In [3], we have investigated the issue of architecture to design integration in the context
of the C2 ADL [4] and the Unified Modeling Language (UML). There, we discussed how
to transform C2 architecture descriptions into (high-level) UML designs. Since designs
are refinements of architectures and those designs are likely further refined into lower-
level designs (and implementations), they could become inconsistent over time. This is
particularly likely if refinements are done manually.

Figure 1 depicts a simple scenario of a part of a cargo routing application. The top-most
row shows two architectural components of that cargo router, called Port and Warehouse.

aPort availableGoods aSurplus aWarehouse

aPort availableGoods aWarehouse

Port Warehouse

aPort aWarehouse

a b c

bca

abc

Realization

Interpretation

Realization

Interpretation

Design

Architecture

Figure 1. Consistency Checking between Architecture and Design Elements

The link between Port and Warehouse indicates that Warehouse accesses services
provided by Port. The bottom-most row shows a design that is supposed to implement
above architectural specifications. The design describes the relationships between the
four design elements aPort, availableGoods, aSurplus, and aWarehouse using UML
class diagram concepts.

In our work on view integration [5], we have shown techniques on how to ensure the
consistency between diagrams. As such, we have investigated ways of describing and
identifying the causes of modeling inconsistencies across UML and architectural views
and have created a view integration framework, accompanied by a set of activities and
techniques, for identifying inconsistencies in an automatable fashion. Our framework
makes use of intermediate models into which diagrams are converted. Those intermediate
models are usually generated via transformation methods. Figure 1 (middle rows) shows
two intermediate models that were automatically generated by abstracting the design
(bottom) via our UML/Analyzer tool. The details of our transformation method are not
relevant here and can be found in [6]. What is relevant here is how the transformation
results (derived model elements) relate to the user-defined model elements of the design
and architecture. In particular we are interested in the realization/interpretation traces that
were generated between the highest abstraction of the design and the architecture. Based
on those traces, we can find inconsistencies.

Figure 2 depicts two (in)consistency rules. The rules describe conditions, if violated,
indicate inconsistencies. For instance, the first rule states that if a relation is an
interpretation (derived via transformation) and that relation has been generated via an
abstraction method (thus is an abstraction) then this relation must have a realization. In
Figure 1, we have only one relation that is both an interpretation and an abstraction, and
that relation is “abc.” The relation “abc” is an interpretation of the design and it was
abstracted from the design. Since that relation also has a realization (the relation from
Warehouse to Port on the architecture level), there is no inconsistency of this type in the
figure.

The second rule states that if there is a realization that is also an interpretation, an
abstraction, and has a realization then the realization of the destination of that relation
must be same as the destination of the realization of that relation. In Figure 1, the relation
“abc” is an interpretation, an abstraction, and has a realization. However, the destination
of “abc” (aWarehouse) and its realization (Warehouse) is not equal to the realization of
“abc” (arrow on architecture level) and its destination (Port). The violation of that rule
indicates an inconsistency in that the direction of the concrete relation does not match the
direction of the abstract relation. Since the concrete relation is part of the design and the
abstract relation is part of the architecture, an inconsistency between the architecture and
design is found.

Concrete relation has no corresponding abstraction:
∀ r ∈ relations, is_interpretation(r)∧ is_abstraction(r)⇒
realization(r)≠ NULL

Direction of concrete relation does not match abstraction:
∀ r ∈ relations, is_interpretation(r)∧ is_abstraction(r)∧
realization(r)≠ NULL ⇒ realization(destination(r)) =
destination(realization(r))

Figure 2. Consistency Rules between Abstraction and Refinement

Above example showed how transformation and analysis can help in identifying
inconsistencies among abstractions and refinements. Without consistent refinement, the
effort spend in creating, analyzing, and simulating architectural specification would be
wasted since only consistent refinement can guarantee that proven architectural properties
(such as security, reliability, and performance) have actually been implemented correctly.
In our work on view analysis, we have described 20 types of inconsistencies that can
happen between an abstract model and a concrete model. Using our abstraction methods
as well as our consistency rules, inconsistencies between architecture and design can be
identified in a more automated fashion.

1. Medvidovic, N., and Taylor, R.N.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software
Engineering, to appear, 2000.

2. G. Booch, I. Jacobson, and J. Rumbaugh, The Unified Modeling Language User
Guide, Addison-Wesley, 1998.

3. Egyed, A. and Medvidovic, N., “A Formal Approach to Heterogeneous Software
Modeling”, Proceedings of Foundational Aspects of Software Engineering (FASE),
Berlin, Germany, 2000.

4. Taylor, R.N., Medvidovic, N., Anderson, K.N., Whitehead, E.J., Jr., Robbins, J.E.,
Nies, K.A., Oreizy, P., and Dubrow, D.L.: A Component- and Message-Based
Architectural Style for GUI Software. IEEE Transactions on Software Engineering,
vol. 22, no. 6, pp. 390-406, 1996.

5. Egyed, A. “Heterogeneous View Integration and its Automation,” to appear, Ph.D.
Dissertation, Center for Software Engineering, University of Southern California, Los
Angeles, CA 90089-0781, USA, 1998

6. Egyed, A. and Kruchten, P. “Rose/Architect: a tool to visualize software
architecture,” Proceedings of the 32nd Annual Hawaii Conference on Systems
Sciences, 1999.

