
WESAS’00 Position Paper
Eric M. Dashofy
Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697
edashofy@ics.uci.edu

The Role of Middleware in Software Architectures

 Architecture-based software development has shown great promise in
increasing the flexibility, adaptability, and reusability of software systems. A
popular definition of a software architecture partitions a system into three key
elements: components, connectors, and configurations. The connectors in a
software architecture play an important role in determining how flexible and
adaptable a software system is. A system with only fixed, static connectors
cannot be changed at runtime to allow the addition of new components.
Connectors that only connect components in a single language or that run in a
single environment can constrain the implementation language and platform of
components in a system. As such, building diverse, standards-compliant multi-
language and multi-platform connectors allows software architects to greatly
expand the capabilities of their systems.

 Single-process, single-machine connectors have been shown to provide a
measure of dynamic adaptability for software systems. For instance, the
developers of ArchStudio, the C2 design environment, have used the Java
language’s dynamic code loading capability and C2’s notion of explicit
connectors to dynamically load, attach, unload, and remove components on the
fly during runtime. However, these changes occur within a single process, on
one machine. Many additional dimensions of flexibility and adaptability lie in the
confluence of middleware technologies and software architectural styles.
Middleware is software that facilitates the communication of components across
language, process, and machine boundaries. Among the many COTS
middleware packages in use today in the computing world, several variations
exist. First, each middleware technology has its own notion of what a “software
component” is. CORBA and RMI view a software component as a single object
in an object-oriented programming language. For Polylith (a software bus from
the University of Maryland), a software component is a UNIX process. Second,
different middleware technologies have varying platform and language support.
CORBA ORBs are only required to support one language and platform, but may
support many of both. Java RMI supports only one language, but will work on
any platform supporting Java. Microsoft COM supports many languages, but
only one platform (Windows). Third, different middleware technologies have
different methods for inter-component communication. CORBA, RMI, and COM
use remote procedure calls. Polylith uses a “shared” message bus. Message
queue-based middleware like MQ series and MSMQ use individual message
queues. Fourth, middleware packages differ in how much dynamism they allow

mailto:edashofy@ics.uci.edu

at runtime. Some middleware packages facilitate loading of in-process
components at run-time, others allow change only at the process-level, and still
others require that the system configuration be determined beforehand, allowing
no run-time change.

 [DMT99] offers an initial exploration of the use of middleware in the C2
architectural style’s explicit software connectors. However, there is still quite a
bit of work to be done. First, the use of middleware will have to be examined in
the context of other architectural styles. The trade-offs between middleware and
the architectural styles themselves will have to be addressed. For instance, it
may be possible to implement a distributed pipe-and-filter architecture with an
RPC-based package like a CORBA ORB, but it may be extremely inefficient
compared to a message-bus package.

The additional dimensions of dynamism introduced by middleware are
also important, but relatively unexplored. Whereas a given architectural style’s
ability to add and remove components at run-time may be well-understood within
a single process framework, the ability to add and remove new processes and
new machines to the style presents new challenges. These challenges include
failure semantics, change semantics, visibility, and performance. In the area of
failure semantics, a lot can go wrong when middleware becomes part of a
software system. In a single-process system, programmers assume that a
procedure call (a simple, implicit type of software connector) will always succeed.
Control will transfer to the called procedure and the parameters will be passed on
the stack appropriately. When a procedure call becomes a remote procedure
call, failure of the underlying middleware, the network, and the inability to
marshal parameters can all cause the call to fail. Furthermore, in systems that
involve “hostile” environments or unreliable connections such as wireless
networks, the failures may only be transient. Dealing with such failures in a
uniform, unobtrusive manner without greatly disturbing the underlying
architectural framework is an area of future work. In a related area, middleware
modifies the change semantics of a system. Adding, removing, or replacing an
existing component in a running system may be vastly different when middleware
is involved. New methods may have to be developed to determine how to save
the state of a component so it can be replaced with a newer version, or how to
stop the message flow through the middleware to a component so it can be
replaced without messages being lost. Depending on the middleware, services
may have to be built to handle these cases, or the middleware itself could
provide these services. In the area of visibility, the configuration of a system is
more difficult to determine when more than one process or machine is involved.
Determining what a system looks like (what components are in the system and
how they are connected) is not too difficult in a single-process system. The use
of a small “architecture manager” that is responsible for loading and connecting
components can assist with this greatly. However, in a multi-process, multi-
machine system, such “architecture managers” must coordinate and
communicate to determine the current state of a system. As such, an originally

small part of the system has itself become a distributed system. Maintaining
effective visibility of a distributed architecture is, thus, another area of future
research. Finally, performance has to be taken into account. Traditionally, real-
time systems depend on tight control of the underlying hardware and operating
system to provide performance and priority guarantees. However, in a
distributed system, performance guarantees will have to include the performance
of many machines and an underlying network. Real-time middleware has been
built, including Lockheed Martin’s HARDpack, a real-time fault-tolerant CORBA
ORB. However, the trade-offs between real-time software architectures and real-
time middleware is not well-understood, and represents an area for future
investigation.

Evaluating middleware-enabled architectures introduces even more

challenges. Because distribution can reduce the visibility of software, doing
architectural constraint checking can be more difficult in a distributed
architecture. Checking the validity of interfaces and connections between
components may also be difficult when the calling component and the called
component reside on different machines or are written in different languages.
Evaluating the performance of a middleware-enabled architecture is complicated
because it increases the involvement of external factors like the performance of
the underlying network and the operating system’s process scheduler. The
additional dimensions of dynamism presented by middleware create new criteria
for evaluating whether a component can be added, removed, or replaced in the
system that do not exist in a single-process implementation. All of these
evaluation metrics represent unexplored areas for future work.

The use of middleware in software architectures presents new abilities

and challenges to software architects. It enables multi-process, multi-language
development, and the ability to control change on a level above that of a single
component—adding a set of components or a small sub-application to a running
system. These new abilities, however, come with a price. Understanding the
trade-offs between middleware technologies and developing evaluation metrics,
tool support, and architectural frameworks for distributed architectures will
require additional work and consideration.

References:
[DMT99] E. M. Dashofy, N. Medvidovic, and R. N. Taylor, “Using Off-the-Shelf
Middleware in Distributed Software Architectures.” Proceedings of ICSE’99, Los
Angeles, CA, 1999.

