
Copyright 2000 Raytheon Company/Unpublished Work

1

Position Paper
Workshop on Evaluating Software Architecture Solutions

The Future of Software Architecture: Special Issues for Complex, Embedded
Applications

Prepared by
Carolyn Boettcher and Richard Falcioni

Raytheon Company
El Segundo, Ca.

Cbboettcher@west.raytheon.com

This position paper on future software architecture is written from the perspective of the
types of software applications that are embedded in Raytheon products, particularly
those that have hard, real-time requirements. The software in these applications is
constrained by the interfaces with various specialized hardware devices. In addition, the
correctness of the results is dependent on their timeliness. In particular, the predictability
of the amount of time that elapses between the initiation of a request and the time that the
request is satisfied is an important quality of the architecture. Moreover, the platforms in
which the software is embedded have very long life times, often 20 to 40 years. During
the system lifetime, the software and hardware is expected to evolve to incorporate new
technologies and provide additional functionality. The adaptability of the software
architecture to facilitate this evolution is a second critical architecture quality. However,
despite these special issues, domain-specific software architectures are seen as the
centerpiece of a long term strategy for creating future affordable, adaptable, software-
intensive products.

Over the past fifteen years, Raytheon developed and used a common software
architecture in several airborne radar systems. However, the software architecture was
closely tied to a particular processing architecture, so that it was difficult and not cost
effective to port it to new generations of processors. With the rapid advancement in
processors and networks, it is highly desirable to be able to insert new processing
technology into systems with minimal software impact. For that reason, a software
representation is desired that is independent of the hardware architecture, but that
facilitates mapping the software onto alternative processing architectures.

A further deficiency in past architecture efforts was the lack of isolation of
hardware/software interfaces, so that considerable reprogramming was needed to interface
with different hardware devices. Because the hardware of interest includes sensors and
other specialized devices, their interfaces are not expected to be included in general
purpose, standard APIs being established in the commercial sector. Therefore,
representations are needed that enable the establishment of domain-specific hardware/
software interface specifications.

Copyright 2000 Raytheon Company/Unpublished Work

2

One of the most important architectural concepts to emerge in recent years is that of plug
and play. Inherent in this concept is a presumption of certain system and module design
standards, the most fundamental being that the plug and play unit is designed to be
completely configurable by means of software. To facilitate software controlled
configuration, the plug and play unit must provide the system with information about the
services it offers, the resources it requires, and, if necessary, the driver software that
supports it.

There are several approaches being taken to extend plug and play, e.g. Jini from Sun
Microsystems, and Universal Plug and Play from Microsoft. Although there are
differences, both include common principles that may permit the plug and play paradigm
to be applied beyond desktop systems to complex, embedded systems. Perhaps the
most significant extension is the peer model for system components, where any node
within an extended plug and play configuration can be viewed as a potential user of
services, a potential provider of services, or both.

A second important extension is the incorporation of peer capabilities/requirements
discovery . Since plug and play peers are designed so that they do not make

assumptions about the peers they will serve as clients or employ as resources, the
required information must be gathered at run-time. At system start up, or whenever a
peer comes online, there is a period of discovery during which the new peer
communicates to the system what capabilities it has and what resources it needs. In this
way, every peer will have access to the capabilities and requirements of every other peer
in the system.

An especially intractable issue in applying extended plug and play architectural principles
to embedded, real-time systems is that of scheduling the use of shared resources. In
desktop systems, the scheduler usually does not have to make any guarantees about when
a resource can be obtained by a potential user of that resource. In contrast, in real-time
systems, there is a need to guarantee that the most critical functions will get the resources
they need in a highly predictable and timely fashion. To accomplish this, there must be
an understanding of the overall objectives and priorities of the system. The question,
then, is the following: Can a mission critical, embedded system be architected in such a
way as to readily resolve system resource scheduling in a manner consistent with mission
objectives, while minimizing configuration effort in a manner that retains the many
advantages of the plug and play paradigm?

To help illuminate the issue, the assumption is made that there is a way to quantify the
importance and time criticality of all system objectives such that they can be compared
to each other in a meaningful and consistent way — all tied to the same frame of reference,
so to speak. Then, the issue is whether or not there is a straightforward method of
deriving the importance and time criticality of specific resource requests from those

Copyright 2000 Raytheon Company/Unpublished Work

3

system level objectives, so that units and subsystems that are developed separately can
autonomously adjust their resource requests in a manner consistent with the overall
mission objectives of the system in which they are being configured.

This position paper has mentioned just a few of the special issues that need to be
considered in representing and evaluating software architectures for real-time embedded
systems. They include the need for predicting system performance, for supporting
system evolution over an extended life time, and for a method of resolving resource
conflicts to provide predictable performance within a plug and play paradigm. The
resolution of these issues is needed if the architectural advances expected in more
conventional systems are to be applied to the specialized realm of real-time, embedded
systems.

