381 | ‘-;}_“

Are you Afraid of Change?

Metrics for Software Evolvability

Arie van Deursen, Delft nivérsity of Technology
Joint work with Eric Bouwers and Joost Visser (SIG)

@avandeursen

il i

e 2 mile tunnel + station * 1200 new apartments
e 4 train tracks e 24,000 m2 park
e Parking for 100 cars e Parking for 4000 bikes

How would you manage this 15 year 650M Euro project?

The TU Delft
Software Engineering Research Group

Education Research

* Programming, * Software testing
software engineering * Software architecture

* MSc, BSc projects * Repository mining

* Collaboration

e End-user programming
* Reactive programming

* Language workbenches

]
TUDelft SE[E

5

SERG Research Partners

Google PHILIPS Microsoft
oracLe [|owEISNS

e

Exact- ROBe=CO

software The Investment Engineers

-l o infotron .8 LOGICBLOX

=
-

-l
WWW.sig.eu Collect detailed technical findings

about software-intensive systems
\

4)

Translate into actionable information

for high-level management
. J

-

Using methods from academic and

self-funded research
_

Today’s Programme

Goal:

Can we measure software quality?

Approach: How can we evaluate metrics?

Research: Can we measure encapsulation?

Outlook:

What are the implications?

Context: Software Risk Assessments

- System Supplier

_______ System Client

Participates |

_______ SRA Client

I B

Receives

— Provides —

— Uses —

v

Sessions

Writes
I

Final

Report

Contributes

to

SRA Consultant

Partic'ipates |

f————— SRA Analyst

‘ system |

Analyzes

Early versus Late Evaluations

 Today’s topic: “Late” evaluations.
— Actually implemented systems
— In need of change

e Out of scope today:
— “Early” evaluation (e.g., ATAM)
— Software process (improvement)

van Deursen, et al. Symphony: View-Driven Software Architecture Reconstruction. WICSA 2004
L. Dobrica and E. Niemela. A survey on software architecture analysis methods. TSE 2002

ISO Software Quality Characteristics

Functional Suitability

\Performance Efficiency

Usability

<- ISO 25010

Security

Maintainability

Compatibility

Reliability

Portability

Software Metric
Pitfalls

Reflections on decade of
metric usage

E. Bouwers, J. Visser, and A.
van Deursen. Getting what
you Measure. CACM, May
2012

practice

DO0I:10.1145/2209249.2209266

Article development led by dC/1(UEUE
queue.acm.org

Four common pitfalls in using software
metrics for project management.

| BY ERIC BOUWERS, JOOST VISSER, AND ARIE VAN DEURSEN

Getting What
You Measure

ARE SOFTWARE METRICS helpful tools or a waste of time?

For every developer who treasures these
mathematical abstractions of software systems
there is a developer who thinks software metrics are
invented just to keep project managers busy. Software
metrics can be very powerful tools that help achieve
your goals but it is important to use them correctly, as
they also have the power to demotivate project teams
and steer development in the wrong direction.

For the past 11 years, the Software Improvement
Group has advised hundreds of organizations
concerning softwaredexelonment and rick
management on thdes
We have used softw &

L

. . . . Lines of Code of a Software System
investigations in wh
of a system. Additio b
track the ongoing d¢ 300
100 systems. While « 250
learned some pitfall % 20
Hriro 1 IR 2 lines of code

ll]kllllkﬁ In a project)
article addresses the =

100
42 COMMUNICATIONS OF THE ACM 50

0. | |

» Metric in a bubble;

» Treating the metric;

» One-track metric; and

» Metrics galore.

Knowing about these pitfalls will
help you recognize them and, hopeful-
ly, avoid them, which ultimately leads
to making your project successful. As
a software engineer, your knowledge
of these pitfalls helps you understand
why project managers want to use soft-
ware metrics and helps you assist the
managers when they are applying met-
ricsinaninefficient manner. As an out-
side consultant, you need to take the
pitfalls into account when presenting
advice and proposing actions. Finally,
if you are doing research in the area of
software metrics, knowing these pit-
falls will help place your new metric
in the right context when presenting it
to practitioners. Before diving into the
pitfalls, let’s look at why software met-
rics can be considered a useful tool.

Software Metrics Steer People
“You get what you measure.” This
phrase definitely applies to software
project teams. No matter what you de-
fine as a metric, as soon as it is used to
evaluate a team, the value of the metric
moves toward the desired value. Thus,
to reach a particular goal, you can con-
tinuously measure properties of the
desired goal and plot these measure-
ments in a place visible to the team.
Ideally, the desired goal is plotted
alongside the current measurement to
indicate the distance to the goal.
Imagine a project in which the run-
time performance of a particular use

Jan Mar May July Sept Nov
2010 2010 2010 2010 2010 2010

Jan Mar May July
2011 2011 2011 2011

12

Pitfall 1: Treating the Metric

Metric values are symptoms:
It’s the root cause that should be addressed

Crawljax Software Monitor

™™™ Maintainability dashboard o ots | Violations ;| Dupl
Current (01 Oct, 2010 : Previous [07 Aug, 2010 ~ 'm
Maintainability Maintainability over time
browser 5
condition =~ browser
configuration 4 e ———————— = condition
core configuration
=—Ccore
forms
oraclecomparators 01 Oct, 2010 3 —forms
P . 01 Aug, 2010 === oraclecomparators
plugin 2 ==plugin
Remainder — Remainder
state — state
util 1 = util
1 2 3 4 3 Aug-10 Aug-10 Sep-10 Sep-10
module | system
Volume Duplication
browser | s —
condition N ==browser
configuration |EEEG_— M == condition
core configuraton
- i —
forms | Java (Production) core
oraclecomparators - W JavaScript 3 ==forms
" it
P . XML === oraclecomparators
plugin Jll o HTML) = plugin
Remainder —— — Remainder
state | = state
g 1 —uil
0 500 1,000 1500 2,000 2,500 3,000 Aug-10 Aug-10 Sep-10 Sep-10
rating | over time | dis n | distribution over time | changes rating | me | distribution | distribution over time | top list
. . A A A A
Unit Complexity U
- > < & & a

FX VN V)

Maintainability per technology

HTML

Java (Production)

01 0ct, 2010
Javascript 01 Aug, 2010
XML
1 2 3 4 s
module | technology
Unit Size
7,000
6,000
5,000 {
4,000 1-20
21-50
3,000 51-100
A 101+
2,000
1,000 {
0
Jul-10 Aug-10 Aug-10 Sep-10
rating | over time | distribution | dist me | top list

Inward Coupling

13

Pitfall 2: Metric in a Bubble

To interpret a metric, a context is needed

Temporal / Trend Peers / Norms

_ N

30

Pitfall 3: Metrics Galore

needs to be measured

Not everything that can be measured

rojects ! jpacman-framework
Dashboard 3 Mar 20
Hotspots
Reviews © Complenity: 207
© Rues complar
© Caverage: 74
Components

Violations Drildown
Clouds

Design

Libraries

sonar

012013
08 Dec 2012
1.547
Lines 3,107
Statements 621
Files a7
Casses 33
Methods 204
Accessors 22
08 Dec 2012
Comments (%)
Comment lines 531
Public documented AP (%)
Public mented API 3
08 Dec 2012
0.0%

0

10 Feb 2013
55

1,569
3173
624
a7

33
208

21

10 Feb 2013

10 Feb 2013
55

0.0%

0

=)

0

13 Mar 2013
5.6-SNAPSHOT

13 Mar 2013
5.6-SNAPSHOT

26.0%

558

13 Mar 2013
5.6-SNAPSHOT

0.0%

Violations
Blocker viotations
Critical violations
Major viciations
Minor victations

Weighted viciations

Complexity
Complexity /method
Complexity /class

Complexity /file

Coverage
Line coverage
Branch coverage

Unit tests su

s (

Unit tests failures

Unit tests errors

Unit tests duration

08 Dec 2012

08 Dec 2012

270

1.3

8.2

7.3

08 Dec 2012

10 Feb 2013
55

[

0

10 Feb 2013
55

10 Feb 2013
55

2.9sec

13 Mar 2013
5.6-SNAPSHOT

7

0

13 Mar 2013
5.6-SNAPSHOT

13 Mar 2013
5.6-SNAPSHOT

15

Pitfall 4: One Track Metric

Trade-offs in design require multiple metrics

In carefully crafted metrics suite,
negative side effects of
optimizing one metric
are counter-balanced

by other ones

Putting Metrics in Context

e Establish benchmark

— Range of industrial systems
with metric values

VicGabe values
20 40 60 80 100

e Determine thresholds based

0

0.70 0.75 0.80 0.85 0.90 0.95 1.00

On quantiles. Quantiles (% of LOC)
— E.g.: 70%, 80%, 90% of systems | Example: McCabe.
— No normal distribution 90% of systems have

average unit complexity
that is below 15.

Tiago L. Alves, Christiaan Ypma, Joost Visser.
Deriving metric thresholds from benchmark data. /ICSM 2010.

Assessments 2003--2008

* |1SO 9126 quality model

e ~50 assessments a ™\
“Architectures allow or

preclude nearly all of
a system’s quality

 Architecture analysis always attributes.
-- Clements et al, 2005/

included _

— No architectural metrics used.

e Code/module level metrics

Heitlager, Kuipers, Visser. A Practical Model for Measuring Maintainability. QUATIC 2007

Van Deursen, Kuipers. Source-Based Software Risk Assessments, ICSM 2003

2009: Re-thinking

Architectural Analysis

Qualitative study of
40 risk assessments

Which architectural
properties?

Outcome: Metrics
refinement wanted

Z | s|C
a = | B
) N =
> = | S
2| 5| <
- | 2| &
T | =| &
Abstraction 8 3 2
Functional Duplication 2 6 | 18
Layering 28 1| 20
Libraries / Frameworks 22 1 1
Logic in Database 1 1 3
Module Dependencies 7| 11 6
Module Functionality 4132 | 13
Module Inconsistency 0 1 0
Module Size 1 1 0
Relation Documentation / Implementation 2 3 0
Source Grouping 0| 14 2
Technology Age 13 0 0
Technology Usage 7 3 0
Technology Combination 5 1 0
Textual Duplication 0 0 4

Eric Bouwers, Joost Visser, Arie van Deursen:
Criteria for the evaluation of implemented architectures. ICSM 2009

ISO 25010 Maintainability

“Degree of effectiveness and efficiency with
which a product or system can be modified by
the intended maintainers”

Five sub-characteristics:

* Analyzability, Modifiability,
e Testability, Reusability
 Modularity

Modularity

1ISO 25010 maintainability
sub characteristic:

“Degree to which a system or computer program
is composed of discrete components
such that a change to one component
has minimal impact on other components”

21

Information Hiding

Things that change at the
same rate belong together.

Things that change quickly
should be insulated from
things that change slowly.

Kent Beck. Naming From the Outside In.
Facebook Blog Post, September 6, 2012.

Measuring Encapsulation?

-

Can we find software architecture metrics that
can serve as indicators
for the success of encapsulation of an
implemented software architecture?

. /

Eric Bouwers, Arie van Deursen, and Joost Visser.
Quantifying the Encapsulation of Implemented Software Architectures
Technical Report TUD-SERG-2011-031-a, Delft University of Technology, 2012

N

o Uk Ww

Metric Criteria in an
Assessment Context

Potential to measure the level of encapsulation
within a system

s defined at (or can be lifted to) the system
evel

s easy to compute and implement
s as independent of technology as possible
Allows for root-cause analysis

Is not influenced by the volume of the
system under evaluation

What is an Architecture?

System Dependency
Kind : Enum
T1 Cardinality: Int
|
* |
Component <fo : Froms
T1 Architectural
* Element
Module Name: String
> .
’1 Size: Int
Unit

Architectural
Meta-Model
25

O M.odule Component —2 Module dependency
(size) —2 Lifted (comp) dependency’

Searching the Literature

ldentified over 40
candidate metrics

e Survey by Koziole
starting point

11 metrics meet
criteria

Sustainability Evaluation of Software Architectures:
A Systematic Review

Heiko Koziolek*
*Industrial Software Systems, ABB Corporate Rasearch, Ladenburg, Germany
heiko.koziolek@de.abb.com

ABSTRACT

Long-ving software systems are sustainable if they can be
cost-efficiently maintained and evolved over their entire life-
cycle. The quality of software architectures determines sus-
tainability to 3 large extent. Scenario-based software archi-
tecture evaluation methods can support sustainability anal-
ysis, but they are still reluctantly used in practice. They
are also not integrated with architecture level metrics when
evaluating implemented systers, which limits their capabil-
ities. Existing li reviews for archif
focus on scenano-based methods, but do not provide a criti-
cal reflection of the applicability of such methods for sustain-
ability evaluation. Our goal s to measure the sustainabil-
ity of software architecture both during early design 1=
and during evolution using and met-
is highly relevant in practice. We thus provide
systematic literature review assessing scenario-based meth-
ods for sustainability support and categorize more than 40
hi level metrics ding to several design prin-
ciples. Our review identifies 3 need for further empirical
research, for the integration of existing methods, and for
the more efficent use of formal architectural models.

1. INTRODUCTION

Software systems with a life span of more than 15 years
must be designed and implemented carcfully so that they
are prepared for maintenance and evolution. During their
life-time such systems inevitably undergo many corrective,
adaptive, enhancive, and preventive changes. This is e

pecially ced in the ind ion domain,
where software systems are embedded in complex tecini-
eal hard . Software arch

are a major driver for the sustainability (ic., cost-eficient
longevity) and evolvability [12, 73], because they influcnce
how quickly and correctly 3 developer is able to und.

While resesrchers have proposed many scenario-based
evaluation methods [25], it is not well understood how they
support improving the sustainability of a system. In practice
many architects still mainly rely on experience and prototyp-
ing to support their design decisions [10]. For implemented
architectures, architecture-level code metrics sssessing mod-
ularzation quality can add valuable information to a sus-
tainability evaluation [18], but an overview and systematic
validation of such metrics is miming. Thereby, architecture.
level code metrics are still sparsely used in practice.

Existing K reviews for
methods [26, 9, 38, 11] focus mainly on scenario-based meth-
ods to evaluate early software m}uttdun dsxgm \nd do
not analyse thar suitability for
Other surveys [11, 59, 19] provide more breadth but do
not include architecturelevel metrics either. Reviews of
architecture-level metrics cannot be found in Literature, as
related studies (e.g., [57]) focus on clusslevel OO metrics
(e.g-, McCabe [49], Halstead [33], Chidamber [24]) and ne-
glect metrics for higher-level code structures.

The contribution of this paper is a structured Literature
review on methods and metrics for evaluating the sustain-
ability of software architectures. Our review carefully anal-
yses existing scenario-based methods for their suitability to
evaluate sustainability and additionally provides a survey
and analysis of more than 40 architecture-level metrics. An
integration of scenario-based and metrics-based methods s
useful to provide a continuous, pro-active approsch towards
evolution problem throughout the entire system lifecycle.
Our survey = intended o help practitioners o select
method reflecting their specific and to help
researchers to identify gaps and pﬂank:ru for future work in
the existing body of work. Our review also provides the
base for a possible integration of both kinds of methods in
a combined and even more valuable approach.

The remainder of this paper is as follows [39]: Section 2

analyse, extend, test, and maintain a software system. Eval-
uating and & lmpmwng the sustainability of a software archi-
tecture is thus 3 major concern for software architects.

Permission to make digital o hand copies of all or part of this work for
personal or classroom e i granied witheat fee provided that copies am
not made or distribeied for profit or commercial advantage and that copies
bear this notice and the fall citation on the first page. To copy otherwise, to
‘=publish, to post ca servers or 1o redistribuke to lists, requixs prioe specific
permission andfor a fee.

defines the most important terms and motivates the need
for 3 new review. Section 3 states our research questions,
list the data sources, inclusion criteria and data collections.
Section 4 then presents the results of the review, which shall
answer the formally stated research questions. Section 5
discusses the results and provides implications for research
and practice. Finally, Section 6 concludes the paper.

2. BACKGROUND

_ This section first defines the terms su:i.mnnb' ity

H. Koziolek. Sustainability evaluation of software architectures: a
systematic review. In QoSA-ISARCS '11, pages 3—12. ACM, 2011

27

Our own Proposal:
Dependency Profiles

Module types:

1. Internal
2. Inbound
3. Outbound
4. Transit

Eric Bouwers, Arie van Deursen, Joost Visser.
Dependency Profiles for Software Architecture Evaluations. ICSM ERA, 2011.

Dependency Profiles (2)

Look at relative size of different module types

Dependency profile is quadruple:
<%internal, %inbound, %outbound, %transfer>

<40, 30, 20, 10> versus <60, 20, 10, 0>

Summary of
componentization
at the system level

Profiles in
benchmark
of ~100

systems

0

20

= —

40 60 80

O hiddenCode

B inboundCode @O outboundCode M transitCode

100

Literature Study: Candidate Metrics

Name Abbr. | Src.

Ratio of Cohesive Interactions RCI Briand et al. 1993]
Cumulative Component Dependency | CCD Lakos 1996]

Average CCD ACD [Lakos 1996]
Normalized CCD NCD Lakos 1996]

Cyclic Dependency Index CDI [Sarkar et al. 2007
Inbound code IBC Bouwers et al. 201 1b]
Outbound code OBC Bouwers et al. 201 1b]
Internal code IC Bouwers et al. 201 1b]
Number of Binary Dependencies NBD

Component Balance CB [Bouwers et al. 201 1a]
Module Size Uniformity Index MSUI [Sarkar et al. 2007]
Number of components NC

31

Metrics Evaluation

1. Quantitative approach

— Which metric is the best predictor of good
encapsulation?

— Compare to change sets (repository mining)

2. Qualitative approach:

— Is the selected metric useful in a late architecture
evaluation context?

C3

)

Commit in version repository results in change set

33

C3

)

Change set |: modules { A, C, Z }
Affects components C1 and C3

34

C3

Change set Il: modules { B, D, E }
Affects components C1 only

Local change

C3

Change set Ill: modules { Q, R, U }
Affects components C2 only

Local change

Change set IV: modules {S, T, Z }
Affects components C2 and C3 =

Observation 1:
Local Change-Sets are Good

* Combine change sets into series

 The more local changes in a series, the better
the encapsulation worked out.

Observation 2:
Metrics may change too

* A change may affect the value of the metrics.

e Cut large set of change sets into sequence of
stable change-set series.

Change set |: modules { A, C, Z }
Affects components C1 and C3

40

Change set I: modules { A, C, Z }
The Change Set may affect metric outcomes!!

41

Solution: Stable Period Identification

<

535 cs6

o SEEP --
QO---=-===="1 ---
O ||||||||||| -———
| |
<t ™ Q\ A

OLI}9N paseq-loysdeus

c's2 cS3 c¢s4

cs’/

csO cs1

>

Change-sets

Experimental Setup

* |dentify 10 long running open source systems
 Determine metrics on monthly snapshots

 Determine stable periods per metric:
— Metric value
— Ratio of local change in this period

 Compute (Spearman) correlations [0, .30, .50, 1]
e Assess significance (p < 0.01)

e [Assess project impact]

* Interpret results

Systems Under Study

Period Size (KLOC)
Name Start End Start | End
Ant 2000-02 | 2011-05 3 97
Argouml 2008-03 | 2011-07 113 108
Beehive 2004-08 | 2008-10 45 86
Crawljax 2010-01 | 2011-07 6 7
Findbugs 2003-04 | 2011-07 7 97
Jasperreports | 2004-01 | 2011-08 28 171
Jedit 2001-10 | 2011-08 35 79
Jhotdraw 2001-03 | 2005-05 8 20
Lucene 2001-10 | 2011-08 6 67
Struts?2 2006-06 | 2011-07 25 22

44

Stable Periods

Months change-sets series length
Metric | periods | Min | Med. | Max | covered | Min | Med. | Max total > 10
RCI 94 1 4.0 38 80.9 % 3 1 113.0 968 | 17760 | 93.6 %
CCD 71 1 6.0 40 85.9 % 3 1 222.0 | 1178 | 19011 | 97.2 %
ACD 111 1 3.0 38 75.6 % 1 92.0 954 | 16564 | 91.9 %
NCD 74 1 4.5 40 83.6 % 31 1925 | 1174 | 17922 | 95.9 %
CDI 65 1 6.0 50 88.3 % 1 | 224.0 | 2334 | 20526 | 954 %
IBC 122 1 3.0 35 68.1 % 3 67.5 715 | 13811 | 959 %
OBC 111 1 3.0 42 | T71.8 % 3 68.0 | 1337 | 15346 | 94.6 %
IC 119 1 2.0 41 71.2 % 2 50.0 | 1257 | 14759 | 91.6 %
NBD 108 1 3.0 38 75.8 % 3 88.5 846 | 15436 | 944 %
CB 82 1 3.0 77 80.6 % 3 76.5 | 5147 | 19345 | 91.5 %
MSUI 99 1 3.0 35 77.1 % 1 91.0 | 1176 | 18028 | 93.9 %
NC 59 1 6.0 53 90.8 % 7 | 262.0 | 1805 | 21428 | 96.6 %

45

Results

Metric | Correlation | Corrected p-value | p-value
RCI 0.16 11.3 0.94
CCD —0.27 0.13 0.01
ACD —0.26 0.04 | <0.01
NCD —0.19 0.59 0.05
CDI 0.32 11.94 1.00
IBC -0.30 <0.01 | <0.01
OBC -0.31 <0.01 | <0.01
IC 0.47 < 0.01 < 0.01
NBD —0.22 0.14 0.01
CB 0.29 0.05 < 0.01
MSUI —0.08 2.42 0.20
NC —0.26 0.27 0.02

Best Indicator for Encapsulation:
Percentage of Internal Code

Module types:
1. Internal

2. Inbound
3. Outbound
4. Transit

Threats to Validity

Construct validity Internal validity

* Encapsulation == * Stable periods: Length,
local change? nr, volume

e Commit == coherent? * Monthly snapshots

e Commit size? * Project factors

* Architectural model? External validity

Reliability * Open source, Java

* Open source systems * IC behaves same on

* All data available other technologies

Shifting paradigms

e Statistical hypothesis testing:

Percentage of internal change is
valid indicator for encapsulation

The Middle Works, 1899-1924
1 1 \\I ‘rrw/-p:\\
JOENMIDEWIEN
VOLUME 11: 1918-1919
Journal Articles, Essays, and Miscellany Published
in the 1918-1919 Period

 Butis it of any use?

Edited by Jo Ann Boydstos
With e

e Can people work with?
e Shift to pragmatic knowledge paradigm

49

Software Risk Assessments

y System Supplier — Provides —

5 System Client — Uses —

+
4 SRA Client

D

Receives
| v

Sessions

Particjpates

Final svstemn
Report y

Wriltes Contributes
to

SRA Consultant |
Analyzes

SRA Analyst

50

Experimental Design

Goal:

* Understand the usefulness of dependency profiles
* From the point of view of external quality assessors
* |n the context of external assessments of implemented

architectures
Data gatherlng

Eric Bouwers, Arie van Deursen, Joost Visser. Evaluating Usefulness of
Software Metrics; An Industrial Experience Report. ICSE SEIP 2013

Embedding

e January 2012: New metrics in SIG models
— 50 risk assessments during 6 months
— Monitors for over 500 systems
— “Component Independence”

e System characteristics:
— C#, Java, ASP, SQL, Cobol, Tandem, ...
— 1000s to several millions of lines of code
— Banking, government, insurance, logistics, ...

Data Gathering: Observations

* February-August 2012
* Observer collects stories of actual usage
* Written down in short memaos.

e 17 different consultants involved

* 49 memos collected.
e 11 different customers and suppliers

53

Data Gathering: Interviews

e 30 minute interviews with 11 assessors
* Open discussion:

— “How do you use the new component
independence metric”?

— Findings in 1 page summaries
* Scale 1-5 answer:

T

— How useful do you find the metric?

— Does it make your job easier?

Resulting Coding System

Targeted improvements

Decision making Start of discussions

Communication device

Small systems
Intuition Older technologies

Influence of nr of components

Component Definition System Scope

E File-system versus mental model

Subjectivity

Model introduction

Definition of actions

Effect prediction

Application
PP Steering

Context
Effort prediction

Component Balance
Implementation
Component

Independence

Linear Equation

N

Volume metric
Dependency types
False positives

Cross language
dependencies

Michaela Greiler, Arie van Deursen, Margaret-Anne D. Storey: Test confessions: A
study of testing practices for plug-in systems. ICSE 2012: 244-253 3

° . Targeted improvements
IVI O tl V a tl n g Decision making Start of discussions

Refactorings

 Two substantial refactorings mentioned:
1. Code with semi-deprecated part
2. Code with wrong top-level decomposition.

* Developers were aware of need for refactoring.
With metrics, they could:
— Explain need to stakeholders
— Explain progress made to stakeholders

° File-system versus mental model
W h a t I S a Component Definition < System Scope

Component?

Different “architectures” exist:
1. In the minds of the developers

2. As-is on the file system () O

3. As used to compute the metrics | © @\ O
_ _
£

e Easiestif 1=2=3 () %“)

* Regard as different views ®@

* Different view per developer? - /

57

Small systems
Intuition < Older technologies

Influence of nr of components

Concerns

* Do size or age affect information hiding?

* No components in Pascal, Coboal, ...
— Naming conventions, folders, mental, ...
— Pick best fitting mental view

* #top level components independent of size
— Metric distribution also not size dependent

Eric Bouwers, José Pedro Correia, Arie van Deursen, Joost Visser: Quantifying the
Analyzability of Software Architectures. WICSA 2011: 83-92 g

Frequency

Not Easy-to-Use. BN MU=} {0]F

Scores

Dependency Profiles: Conclusions

Lessons Learned

Need for

e Strict component definition
guidelines

* Body of knowledge
— Value patterns
— With recommendations
— Effort estimation

* Improved dependency
resolution

Threats to Validity
* High realism
e Data confidential

* Range of different systems
and technologies

Wanted: replication in open
source (Java / Sonar) context

A Summary in Seven Slides

61

Accountability and Explainability

e Accountability in
software architecture?

— Not very popular

 Stakeholders are entitled
to an explanation

* Metrics are a necessary
ingredient

62

1.0

0.8

0.6

0.4

0.2

0.0

Metrics Need Context

Temporal / Trend

© SBO
x CSU
= CB

B—RB—B—B—B—RB—B—B—8—R

S L s S B e B B s B B E B B R
10 11 12 13 14 20 21 22 23 24 30 31 32 33 34 35 40 41 42 43 44 50 51

Peers / Norms

~

15

20

25

30

63

Metrics Research Needs Datasets

Two recent Delft data sets:

e Github Torrent:

— Years of github history in
relational database.

— Georgios Gousios

* Maven Dependency Dataset
— Versioned call-level

ghtorrent.org

The GHTorrent project

0
K suomit
el

. . next version next version next version next version
d e p e n d e n C I e S I n fu | I - n contains 0 contains n contains o
jar flle(v) package(v) '__> Class(v) '__y method(v)
Maven Central. O @, —— @)
depends on subpackage extends/ calls
implements

— Steven Raemaekers

Metrics Research needs
Qualitative Methods

e Evaluate based upon the
possibilities of action

e Calls for rigorous studies capturing
reality in rich narratives

* Case studies, interviews, surveys,
ethnography, grounded theory, ...

65

Module types:
1.

2
3.
4

Internal
. Inbound
Outbound
. Transit

Encapsulation Can be Measured

And doing so, leads to meaningful
discussions.

66

Should we be Afraid of Change?

Metrics for Software Evolvability

Arie van Dersen, Delft Universit of Technology
Joint work with Eric Bouwers & Joost Visser (SIG)

@avandeursen

