

Felicitous Computing

David S. Rosenblum School of Computing National University of Singapore

Singapore

Ubiquitous Computing The Ideal

"The most profound technologies are those that disappear."

[Mark Weiser, Scientific American, 1991]

Weiser envisioned computing being "an integral, invisible part of people's lives", where "the computers themselves … vanish into the background"

Ubiquitous Computing The Research Vision

The Research Vision

The Research Vision

The Research Vision

California PATH

The Research Vision

The Reality Fading into the Background?

The Reality Fading into the Background?

The Reality Google Android Market (early 2012)

• The average price of the top 50 paid applications is just US\$3.79 [modymi.com]

The Reality Google Android Market (early 2012)

- The average price of the top 50 paid applications is just US\$3.79 [modymi.com]
- 79.3% of paid applications have been downloaded less than 100 times [Distimo]

The Reality Google Android Market (early 2012)

- The average price of the top 50 paid applications is just US\$3.79 [modymi.com]
- 79.3% of paid applications have been downloaded less than 100 times [Distimo]
- Only 0.1% of paid applications have been downloaded 50,000 times or more [Distimo]

Engage your customers Engage your customers

Engage your customers Engage your customers

Engage your customers! Engage your customers!

Engage your customers! Engage your customers! Engage your customers! Engage your customers! Engage your customers! Engage your customers! Engage your customers! Engage your cust

Engage your customersi Engage your customersi

4 to Make And

My Next Appointments Calendar?

Goal: to realize the original ideals of ubiquitous computing

 A new multi-disciplinary research institute hosted in the NUS School of Computing
Strongly driven by challenge problems in a

Strongly driven by challenge problems in a variety of application domains

Felicitous Computing Definition

feeliceietous, adj., well chosen or suited to the circumstances; pleasing and fortunate [Oxford American Dictionary]

- Computing that is not poorly chosen, illsuited, displeasing or unfortunate!
- An overarching philosophy of technology development and evaluation

Felicitous Computing Some Key Elements

Felicitous Computing Some Key Elements

ATET 30

context-awareness

slide t**o unl**ocl

Felicitous Computing Some Key Elements

intelligent, unobtrusive processing

Felicitous Computing Some Key Elements

robustness

Felicitous Computing Some Key Elements

Felicitous Computing

Some Key Elements

Beyond these technical characteristics ...
Natural
Useful
to Users
Realistic
Beneficial

Felicitous Computing

Current Research Directions

Context-Aware Adaptation
Multi-Modal Interaction
Emotion Sensing and Inference
Software Engineering for Mobile Systems

Two Example Projects

- I. Automated Fault Detection in Context-Aware Adaptive Applications (CAAAs)
- 2. Context-Aware Mobile Music Recommendation (CAMMR)

Solved problems of both design and robustness
Revealed new, interesting research challenges

AT&T 3G AT&		
Monday, April 27		
slide to unlock		

Application

Environment

Application

Physical Context

Environment

	Application	
	Adaptation Manager Context	
Physical Context	Environment	

Rules are strongly interdependent Application and have multiple priorities Adaptation Rule Midd Manager **Engine** lleware which makes Context reasoning difficult Manager even for a small number of rules

Environment

Context is sensed periodically

from multiple sources

at varying rates

Approach

- I. Derive Adaptation Finite-State Machine (A-FSM) from rule logic
- 2. Explore state space of A-FSM to discover potential faults
 - Enumerative algorithms
 - ✓ Symbolic algorithms
- 3. (Confirm existence of discovered faults)

M. Sama, S. Elbaum, F. Raimondi and D.S. Rosenblum, "Context-Aware Adaptive Applications: Fault Patterns and Their Automated Identification", *IEEE Transactions on Software Engineering*, Vol. 36, No. 5, Sep./Oct. 2010, pp. 644-661.

PhoneAdapter

PhoneAdapter

PhoneAdapter

PhoneAdapter A-FSM

PhoneAdapter A-FSM

PhoneAdapter A-FSM

Global constraints:

checking location implies GPS is on locations are mutually exclusive speeds monotonically increase a meeting's end time is later than its start time

User's phone discovers office PC at home (or vice versa)

Outdoor

User leaves home

User starts driving before Bluetooth detects hands-free system

Example Faults in PhoneAdapter

Example Faults in PhoneAdapter

Faults in CAAAs

Behavioral Faults
Nondeterminism
Dead rule
Dead state

Unreachable state
Activation race
Activation cycle

Faults in CAAAs

- Behavioral Faults
 Nondeterminism
 Dead rule
 Dead state
- Hazards
 Hold hazard
 Activation hazard

Unreachable state
Activation race
Activation cycle

Priority inversion hazard

PhoneAdapter Results

Behavioral Faults: Enumerative, Symbolic

State	Nondeterministic	Dead	Adaptation		Unreachable	
	Adaptations	Predicates	Races	Cycles	States	
General	37	1	45	13	0	
Outdoor	3	0	135	23	0	
Jogging	0	0	97	19	0	
Driving	0	0	36	13	0	
DrivingFast	0	0	58	19	0	
Home	0	0	76	19	0	
Office	0	0	29	1	0	
Meeting	0	0	32	1	0	
Sync	0	0	27	5	1	

PhoneAdapter Results Hazards: Enumerative

State	Context Hazards				
	Paths	Hold	Activ.	Prior.	
General	14085	0	11	3182	
Outdoor	161	0	0	52	
Jogging	2	0	0	0	
Driving	16	2	2	4	
DrivingFast	2	0	0	0	
Home	104	8	0	13	
Office	82634	1828	<mark>368</mark>	2164	
Meeting	0	0	0	0	
Sync	2	2	0	0	

Summary

Rule-based CAAAs can be extremely faultprone, even with a small set of rules and context variables

The fault detection algorithms find many actual faults, with different tradeoffs

✓ Some alternative to rule-based adaptation is needed ...

Context-Aware Mobile Music Recommendation

 Users' short-term music needs are driven by their current activity

 Fully automated music recommendation requires solving the cold-start problem:
 Which existing user will like a new song?
 Which existing songs will a new user like?

X.Wang, D.S. Rosenblum and Y.Wang, "Context-Aware Mobile Music Recommendation for Daily Activities", Full Paper, *Proc. ACM Multimedia* 2012 (ACMMM 2012), Nara, Japan, Oct.–Nov. 2012, pp. 91–108.

CAMMR Key Characteristics

Real-time sensor-driven activity inference Running, Walking, Sleeping, Working, Studying, Shopping

Offline low-level audio content analysis

Personalization of recommendations

CAMMR Supervised Learning

Machine learning, not handcrafted rules!
 Ground truth:

 Activity: Manually tagged sensor streams
 Music: Activity-tagged Grooveshark playlists

 Coupled with incremental learning of individual preferences

Architecture

Music Database

Front End

Architecture

Front End

Architecture

Sensor Stream Feature Extraction

Sensor signal features

Architecture

Architecture

Architecture

Inter-Subject Agreement on Music Preferences

Activity	Kappa Agreement	Percent Agreement
Running	0.27	0.35
Working	0.03	0.02
Sleeping	0.29	0.28
Walking	0.03	0.03
Shopping	0.07	0.17
Studying	0.09	0.11

- 10 subjects
- Manual activity tagging of 1200 Grooveshark and YouTube songs
- p < 0.0001

Precision of Activity Inference

Activity	AdaBoost	C4.5	LR	NB	SVM	KNN
Running	0.974	0.976	0.975	0.841	0.974	0.970
Working	0.933	<mark>0.932</mark>	0 <mark>.921</mark>	0.876	0.929	0.922
Sleeping	0.999	0.999	0.999	0.994	0.999	0.993
Walking	0.961	0.960	0.955	0.909	0.960	0.953
Shopping	0.972	0.972	0.948	0.953	0.965	0.955
Studying	0.854	0.867	0.835	0.694	0.860	0.855
OVERALL	0.951	<mark>0.952</mark>	0.941	0.893	0.950	0.943

- I0 subjects, 6 activities, 30 minutes/session
- Naive Bayes provides very good precision and efficiency for smartphones

Precision of Activity Inference

Activity	AdaBoost	C4.5	LR	NB	SVM	KNN
Running	0.974	<mark>0.97</mark> 6	0.975	0.841	0.974	0.970
Working	0.933	0.932	0 <mark>.921</mark>	0.876	0.929	0.922
Sleeping	0.999	0.999	0.999	0.994	0.999	0.993
Walking	0.961	0.960	0.955	0.909	0.960	0.953
Shopping	0.972	0.972	0.948	0.953	0.965	0.955
Studying	0.854	0.867	0.835	0.694	0.860	0.855
OVERALL	0.951	0.952	0.941	0.893	0.950	0.943

- I0 subjects, 6 activities, 30 minutes/session
- Naive Bayes provides very good precision and efficiency for smartphones

Retrieval Performance

- Precision@K for top K songs
- Baselines are random rankings

Accuracy of Music Recommendation

- 10 subjects, divided into experimental and control group
- R2 vs RI: p = 0.0478
- R3 vs R2: p = 0.1374
- R3 vs RI: p = 0.0001

Effectiveness of Incremental Adaptation

• 2 subjects, continuous usage for one week

CAMMR Summary

 CAMMR is the first automated solution for short-term music listening needs

- Provides a complete solution to the coldstart problem
- Employs machine learning for more robust adaptation

Other Projects Emotion Sensing

Arousal

+ Valence

 Sensing from Mobile & Wearable Sensors Microphone: speech **Camera:** facial expressions, eye tracking **Accelerometer:** movement, orientation **MS Kinect:** gesture **GPS**: location **GSR:** skin conductivity HRM: pulse

Other Projects Emotion Sensing

- Many Obstacles and Limitations
 - Lack of empirical evidence for biological signatures of emotions
 - Much variability in experiencing emotions
 Short-term situations vs. long-term mood
 Between and within cultures and languages
 By the same individual
 - Difficulty of inducing spontaneous, genuine emotion in controlled experimental settings

Research Agenda
 ✓ Multimodal sensing of core affect
 ✓ Contextualization of emotion sensing
 ✓ Computational platform for sensing and processing

Realistic empirical study designs

Felicitous Computing

Software Engineering Challenges

Felicitous Computing Software Engineering Challenges

"There are known knowns; there are things we know we know. We also know there are known unknowns; that is to say, we know there are some things we do not know. But there are also unknown unknowns – the ones we don't know we don't know."

- Donald Rumsfeld

Felicitous Computing Software Engineering Challenges

- Validation of ubiquitous computing systems is riddled with uncertainty
 - Unpredictable ambient environments
 - Imprecision of context inference
 - Disagreement among users and/or observers
 - Slippery slope between "known unknowns" and faults
- Similar in spirit (but not in character) to Weyuker's "non-testable programs"
- May need to employ relative quality comparison of systems rather than absolute quality assessment

Conclusion

The technology for felicitous computing is here

- But building felicitous computing systems remains challenging
- We still lack a clear body of design and engineering principles
- At NUS we are pursuing research breakthroughs to make felicitous computing an integrated and invisible part of people's lives

Felicitous Computing

David S. Rosenblum School of Computing National University of Singapore

Thank you!