
4/19/2013

1

PRESERVING, GENERATING, AND VISUALIZING KNOWLEDGE OF
ARCHITECTURALLY SIGNIFICANT REQUIREMENTS IN SOURCE CODE

Institute for Software Research
Distinguished Speaker Series
University of California, Irvine
April 19th, 2013
Dr. Jane Cleland-Huang
DePaul University

Research funded by the US National Science Foundation under Grants CCF-0959924 and CCF-1265178.

Fast and
reliable

Portable
and easy
to install

Architecturally Significant Requirements

 Play a strategic role in driving
architectural design

 Often critical to the success
(or failure of a system).

 Often represent quality
concerns such as
performance, portability,
reliability etc.

 Non-functional
Requirements (NFRs) are
often overlooked in the
requirements specification
process.

2

Example: A medical device
used to perform laser
surgery must be highly
responsive.

4/19/2013

2

Talk Outline

 Architecturally Significant Requirements and their
impact on architectural design.

• Focus on agile projects

• Examples from TraceLab project

 Establishing and utilizing trace links between quality
concerns and code

• Patterns of traceability

• Archie tool

 Recovering architectural knowledge

• Machine learning techniques

3

Working with ASRs

4

 In practice ASRs (especially NFRs) are often not elicited and
are not clearly specified.

 Many Software Requirements Specifications simply
don’t include NFRs.

 Similarly, many agile projects fail to include ASR-related
user stories.

 Is there a better way?

 In our TraceLab project we adopted a persona-driven
approach which enabled us to discover architecturally
significant requirements early in the project and to use our
knowledge to make informed decisions about architectural
design and implementation.

4/19/2013

3

ASRs in TraceLab

5

 TraceLab is a US $2 Million Project
funded by the National Science Foundation

 Developed by collaborators at DePaul University, College of
William and Mary, Kent State Univ., and Univ. of Kentucky.

 Intended to empower future traceability research through
facilitating innovation and creativity, increasing
collaboration between traceability researchers, decreasing
the startup costs and effort of new traceability research
projects, and fostering technology transfer.

 Provides an environment in which researchers can design
and execute experiments, share components and
datasets, and comparatively evaluate results in a
controlled setting.

ASRs in TraceLab

6

4/19/2013

4

Competing Tradeoffs

7

We want to write
components in C#.

No we have to
write in C.

I want to just reuse
my R and MatLab
scripts.

I don’t want to do
any programming.

It better be as fast as
running experiments
that I write myself.

I’m not using other
people’s components
unless I know they are
going to work.

I’m willing to share
with others, but not
until after I’ve
published.

We only have 3 years to
deliver everything!!

Traditional HCI Personas

8

We decided to represent the conflicting needs through
developing a set of architecturally-savvy personas.

Traditionally persona construction
involves surveying users, classifying
them, formulating hypotheses of
use, validating, creating scenarios,
and finally designing personas.

Too time consuming for our project
i.e. too much upfront effort that
would retard the achievement of
our goals.

Solution: Persona sketches.

Reused courtesy Cynthia Putnam

4/19/2013

5

Architecturally-Savvy Personas (Lite)

9
Jane Cleland-Huang, Adam Czauderna, Ed Keenan: A Persona-Based Approach for Exploring
Architecturally Significant Requirements in Agile Projects. REFSQ 2013: 18-33

Meet Karly…

10

Karly
Age: 26, PhD Student

Karly is a new PhD student. She is interested in tracing
requirements to software architecture.

She has contacts with a local company who will allow
her to access their data for her experiments; however
this data is proprietary (i.e. protected by a NDA) and so
she cannot share it with anyone else.

She predicts that it will take her about 6 months to set
up her traceability environment, but then she discovers
TRACY. Karly is quite a good programmer, but is much
more interested in the process side of her research.

Fast trace retrieval:
Platform selection:
Language selection:
Reliability:
Extensibility:
Ease of component upload
Ease of installation
Highly intuitive interface
Extensive document
compatibility
Data confidentiality
Broad adoption

My user stories:

1. I need to be able to maintain confidentiality of my data.

2. I need to be able to create my own components and
integrate them with existing experiments.

3. I need to be able to setup new benchmarks for
comparative purposes.

4. I need to be able to program components in C#.

http://www.informatik.uni-trier.de/~ley/db/conf/refsq/refsq2013.html

4/19/2013

6

Meet Jack..

11

Jack is married and has two young children. He has recently
been hired by the TRACY project into the role of Software
Architect/Developer. He has 6 years of experience as a software
developer and 2 years as a lead architect in a successful gaming
company. He has taken the job on the TRACY project because
he is excited by the challenge of working in a research oriented
project.

Jack is very motivated to build a high quality product. Jack has
never worked in an academic research setting before. He is very
collaborative and is looking forward to working with the other
developers, academics, and students on the project.

Fast trace retrieval:
Platform selection:
Language selection:
Reliability:
Extensibility:
Ease of component upload
Ease of installation
Highly intuitive interface
Extensive document
compatibility
Data confidentiality
Broad adoption

My user stories:

1. I need to develop the TraceLab framework in a language
which supports rapid prototyping.

2. I need the framework language to easily interface with, and
call, components written in other languages.

3. I need the platform to provide natural support for the
separation of model and view components.

4. I need libraries to support GUI development.

Jack, 34
Architect

Meet the full ensemble…

12

Tom

Karly

Jack

Glen
Age: 23
MS Student at
Hillsbury College

Glen is an MS student
who has been helping
his advisor to build
TraceLab components.
He has never
contributed to an open
source project before,
so he needs to figure
out how to make
contributions to
TraceLab. Glen is very
collaborative and is
looking forward to
working with the other
researchers on the
project.

Wayne
Age:46
Technical Project Mgr
ABC Corp

Wayne is the technical
manager for a very
large systems
engineering project.
He could be described
as an early adopter, as
he prides himself in
keeping an eye out for
good ideas that could
help his organization.
Wayne wants to
improve the efficiency
of traceability practices
in his organization and
is interested in using
TraceLab.

Mary
Age: 51
NSF Program Officer

Mary is the funding
officer for the grant.
She is concerned that
the project delivers on
time and ultimately
meets all major goals in
terms of adoption,
research
advancements, and
technology transfer.

4/19/2013

7

Understand key concerns

13

Process steps:

1. Analyze
persona needs.

2. Identify primary
drivers.

3. Extract all
related user
stories.

4. Assign to
personas.

5. Brainstorm
architectural
design
solutions and
evaluate
leading
contenders.

6. Evaluate against
personas.

Design solutions for key concerns

14

Process steps:

7. Identify
architectural
risks associated
with the
proposed
solution and
their
mitigations.

8. Consider and
document
impacts upon
personas.

4/19/2013

8

Architectural design

15

Supports build-now/port-later decision

Decision 2: Workflow architecture

16

Options

⁻ Pipe-and-filter
⁻ Services
⁻ Precedence

graph +
Blackboard

4/19/2013

9

Decision 2: Workflow architecture

17

Our approach is generalizable..

We created five Architecturally
Savvy Personas for a
Mechatronics Traceability project
that we are working on with
Siemens.

The personas highlighted
different kinds of concerns from
those highlighted by the TraceLab
personas

Elaine, Age 50
Mechanical Engineer

Elaine is a mechanical engineer with over 20 years of
experience working for Company X She is in charge of
modeling the mechanisms for a railway gate. Her model
needs to integrate with other models that describe the
signaling process for the railway system. Elaine is aware that
the crossing-gate must comply to a number of regulatory
codes and she would like to be able to view the relevant codes
from within her model. Elaine has access rights to update her
model and to read requirements.

Fast trace
retrieval
Access control
Extensibility to
new case tools
Interoperability
of data formats
Remote access
Trace GUIs as
plugins

John is the compliance officer for company X. His job is to ensure
that all regulatory codes are met by the delivered product and to
generate reports to demonstrate this. He is a very detail-oriented
person and takes great pride in his job. No products have ever
been recalled under his watch for non-compliance purposes.

My user stories:
1. I need to be able to access all regulatory codes that impact

the model I am currently working on.
2. I would like to control who views the models I am working on,

and which version they view.
3.When I trace between my model and requirements, I need

the traces to be returned within 30 seconds.
4. I need trace information to be displayed as an integral part of

the model I am working in.

My user stories:
1. I need to be able to generate a report which shows a list of all

elements in the design that help satisfy each relevant regulatory
code. The report should generate within 2 minutes.

2. I need to view traces created in a wide variety of products.
3. I need to be able to generate and view traces for remote (i.e.

globally distributed) models.

Fast trace
retrieval
Access control
Extensibility to
new case tools
Interoperability
of data formats
Remote access
Trace GUIs as
plugins.

Stanley, Age 50
Compliance Officer

4/19/2013

10

SCRUM+ ASPs

19

Product backlog of
features as prioritized
by customer

Sprint-sized
architectural chunks
associated with
specific features.

 Select features

plus their associated
architectural
components for the
Sprint backlog.

Backlog tasks
expanded by
team

Daily scrum
meeting

24
hours

30
days

 Identify preliminary personas

Elaborate individual
personas and explore
quality concerns

Explore architectural
decisions and trade-offs

Evaluate
solution
with respect
to persona’s
goals.

Deliver potentially
shippable product.

Update
personas

Break
architecture
into sprint-
sized
chunks.

Construct software, including
architecture, incrementally.

So what did we learn?

20

 Emerging and analyzing quality concerns early allowed us
to make more informed architectural decisions.

 Sketching out architecturally savvy personas (ASPs) enables
us to think about quality concerns in a more tangible way.

 Our approach fits naturally into the SCRUM-like process we
had adopted for the project.

 A light-weight approach for integrating NFR-thinking into a
fast-paced, agile, development environment.

4/19/2013

11

Talk Outline

 Architecturally Significant Requirements and their
impact on architectural design.

• Focus on agile projects

• Examples from TraceLab project

 Establishing and utilizing traceability links between
quality concerns and code

• Patterns of traceability

• Archie tool

 Recovering architectural knowledge

• Machine learning techniques

21

Change Cycle: Ideal World

22

Source Code
Environment

Change

IS-A
Architecture

Intended
Architecture

Influences

Align

Results in

Change in code

Change Reasoning

Ideal World: Architectural information is documented during the Architectural design phase
and is updated regularly to reflect the current system architecture.

Slide used courtesy of Mehdi Mirakhorli

4/19/2013

12

Change Cycle: Real World

23

Real World: Architectural information is outdated and does not reflect the current
architecture of the system.

Source Code
Environment

Change

IS-A
Architecture

Intended
Architecture

Influences

Results in

Change in code

Drifts From
Erodes the
architecture

Slide used courtesy of Mehdi Mirakhorli

Architectural Degradation

24

1. Intended and
implemented
architecture
diverge.

2. Architecture
violations (i.e. strict
layering bypassed,
or pipe-and-filter
pipeline violated);
cyclic dependencies;
dead code; code
clones; metric
outliers etc.

System becomes brittle starts to
erode.

4/19/2013

13

Tracing Concerns to Code

25

Requirements traceability

is the ability to describe

and follow the life of a

requirement, in both a

forward and backward

direction, i.e. from its

origins, through its

development and spec-

ification, to its subsequent

deployment and use, and

through periods of

ongoing refinement and

iteration in any of these

phases.”

Gotel and Finkelstein,1994.

Tracing Concerns to Code

We can use the Softgoal
Interdependency Graph
(SIG) notation to capture
the goal refinements that
lead to our architectural
decisions.

Decision-Centric Traceability of Architectural
Concerns , Jane Cleland-Huang, Mehdi
Mirakhorli, Adam Czauderna, and Mateusz
Wieloch , Traceability in Emerging Forms of
Software Engineering, May 2013.

4/19/2013

14

Tracing Concerns to Code

27

Only certain kinds of
architectural decisions
are traceable to code.

Customized Views

28

A custom view shows the
impact of the architectural
decision to pass data using
serialization, on higher
level quality concerns.

4/19/2013

15

Customized Views

29

A persona /
user
perspective
upon
architectural
decisions.

Some decisions occur across multiple projects

30

Can we find
better ways
to trace
quality
concerns to
code when
common
architectural
decisions are
made?

4/19/2013

16

Some decisions recur across projects

31

Due to complexity of the problem, we tackled tactics first.

 Tactics are pervasive in fault-tolerant and/or high-
performance systems.

 Tactics seem to have an interesting relationship to change.

Tactic Occurrence Across Projects

32

Tactics tend to be found in safety-critical, and/or other kinds of
performance-centric systems.

Courtesy Mehdi Mirakhorli

4/19/2013

17

Tactic Traceability Patterns

33

 Mehdi Mirakhorli and Jane Cleland-Huang, Using Tactic Traceability Information Models to Reduce the Risk of Architectural Degradation during System
Maintenance, International Conference on Software Maintenance, Williamsburg, USA, September, 2011

 Mehdi Mirakhorli and Jane Cleland-Huang, “A Pattern System for Tracing Architectural Concerns”, Pattern Languages of Programming, Portland, USA,
October, 2011

Reliability
goal

Availability
goal

Heartbeat
tactic

Requirement Rationale

<<Component>
Emitter

<<Component>
Receiver

<<Component>
Fault Monitor

helps helps

justifies Is realized by

Emits
heartbeat

Receives
heartbeat

is monitored by sends
pulse

Emitter Receiver Fault Monitor

maps maps maps

 Archie…

4/19/2013

18

Talk Outline

 Architecturally Significant Requirements and their
impact on architectural design.

• Focus on agile projects

• Examples from TraceLab project

 Establishing and utilizing traceability links between
quality concerns and code

• Patterns of traceability

• Archie tool

 Recovering architectural knowledge

• Machine learning techniques

35

T
R

A
C

E
R

ETR
IEV

A
L

36

Trace Retrieval

In contrast, architectural concerns are often NOT unique in individual systems – so
we can train our traceability engine to recognize them across projects.

4/19/2013

19

T
R

A
C

E
R

ETR
IEV

A
L

37

Tactic Detector

Our tactic detector
uses a previously
designed classifier –
now implemented
in TraceLab.

Normalizes the frequency with
which term t occurs in the
requirement with respect to the
length of the requirement.

Computes the percentage
of documents of type Q
containing term t

Decreases
the weight
of terms
that are
project
specific.

J. Cleland-Huang, R. Settimi, X.Zou, P. Solc, “Automated Detection and Classification of Quality
Requirements”, Requirements Engineering Journal, Springer-Verlag, August, 2006. pp. 36-45

 Computes the likelihood
that requirement r traces
to Query q.

38

Classification Approach

4/19/2013

20

Towards Automation

39

Tactic-Grained Classification

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

F-
M

ea
su

re

Classification Threshold

Scheduling

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

F-
M

ea
su

re

Classification Threshold

Resource Pooling

Legend

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

F-
M

ea
su

re

Classification Threshold

Scheduling

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

F-
M

ea
su

re

Classification Threshold

Resource Pooling

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

F-
M

ea
su

re

Classification Threshold

Heartbeat

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

F-
M

ea
su

re

Classification Threshold

Heartbeat

D
e
s
c
ri

p
ti

o
n

-t
ra

in
e
d

C

o
d

e
-t

ra
in

e
d

40

4/19/2013

21

Tactic-trained Classification / Code Trained

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

F-
M

e
as

u
re

Classification Threshold

Audit Trail

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

F-
M

e
as

u
re

Classification Threshold

Authentication

Legend

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

F-
M

ea
su

re

Classification Threshold

Audit Trail

0

0.2

0.4

0.6

0.8

1

0.1 0.3 0.5 0.7 0.9

F-
M

ea
su

re

Classification Threshold

Authentication

D
e
s
c
ri

p
ti

o
n

-t
ra

in
e
d

C

o
d

e
-t

ra
in

e
d

41

HADOOP Case Study

42

4/19/2013

22

More Challenging: Identifying Roles

43

Reliability
goal

Availability
goal

Heartbeat
tactic

Requirement Rationale

<<Component>
Emitter

<<Component>
Receiver

<<Component>
Fault Monitor

helps helps

justifies Is realized by

Emits
heartbeat

Receives
heartbeat

is monitored by sends
pulse

Emitter Receiver Fault Monitor

maps maps maps

Finding Roles is Hard

We integrated light-weight structural approaches – but only evaluated them in a single case study. 44

4/19/2013

23

Tactic-trained Classification / Code Trained

45

Using Generated Links to mitigate Architectural Decay

 Are automatically reconstructed
traceability links good enough
for use?

 Evaluated the usefulness of the
generated fine-grained
traceability links for supporting
software maintenance.

 Utilized Hadoop change logs for
the past four releases, and
simulated the scenario in which
generated links were used to
control the generation of
notification messages.

You are modifying Datanode.java. This file

appears to play the role of heartbeat

emitter in the heartbeat tactic.

This class therefore contributes to reliability

and availability goals. Tell me more.

Please confirm the role of this class in the

heartbeat tactic:

Heartbeat emitter (Prob 79%)

Heartbeat sender (Prob 75%)

Supporting role

Unrelated to heartbeat

46

4/19/2013

24

Visualizations

47

Conclusions

48

 Managing quality concerns (aka NFRs) is a complete life-
cycle activity.

 Elicit them early

 Design to satisfy them

 Preserve them

 If necessary, rediscover them

4/19/2013

25

49

Tackle
cutting edge
problems in
software
traceability.

Build a
supportive
community of
researchers.

PRESERVING, GENERATING, AND VISUALIZING KNOWLEDGE OF
ARCHITECTURALLY SIGNIFICANT REQUIREMENTS IN SOURCE CODE

Institute for Software Research
Distinguished Speaker Series
University of California, Irvine
April 19th, 2013
Dr. Jane Cleland-Huang
DePaul University

Any
questions?

Research funded by the US National Science Foundation under Major Research Instrumentation Grants CCF-0959924 and CCF-1265178.

