
Scalable and Cost-Effective Model-Based Software
Verification and Testing

University of Luxembourg
Interdisciplinary Centre for Security, Reliability and Trust
Software Verification and Validation Lab (www.svv.lu)

May 17th, 2013
University of California, Irvine

Lionel Briand, IEEE Fellow
FNR PEARL Chair

Luxembourg

•  Small country and
population

•  One of the wealthiest in the
world

•  Young university (2003)
and Ph.D. programs (2007)

•  ICT security and reliability,
a national research priority

•  Priorities implemented as
interdisciplinary centres

•  International

•  Three official languages:
English, French, German

2

SnT Software Verification and Validation Lab

•  SnT centre, Est. 2009: Interdisciplinary, ICT security-reliability-trust

•  180 scientists and Ph.D. candidates, 20 industry partners

•  SVV Lab: Established January 2012, www.svv.lu

•  15 scientists (Research scientists, associates, and PhD candidates)

•  Industry-relevant research on system dependability: security, safety,
reliability

•  Four partners: Cetrel, CTIE, Delphi, SES, …

3

Research Paradigm

•  Research informed by practice

•  Well-defined problems in context

•  Realistic evaluation

•  Long term industrial collaborations

4

Acknowledgements

•  Shiva Nejati

•  Mehrdad Sabetzadeh

•  Yvan Labiche

•  Andrea Arcuri

•  Stefano Di Alesio

•  Reza Matinnejad

•  Zohaib Iqbal

•  Shaukat Ali

•  Hadi Hemmati
•  Marwa Shousha

•  …

5

“Model-based”?

•  All engineering disciplines rely
on abstraction and therefore
models

•  In most cases, it is the only way
to effectively automate testing or
verification

•  Models have many other
purposes: Communication,
support requirements and design

•  There are many ways to model
systems and their environment

•  In a given context, this choice is
driven by the application domain,
standards and practices,
objectives, and skills

6

Models in Software Engineering

•  Model: An abstract and analyzable description of software artifacts,
created for a purpose

7

Requirements models Architecture
models Behavioural

models
Test
models

•  Abstract: Details are omitted. Partial representation. Much smaller and
simpler than the artifact being modeled.

•  Analyzable: Leads to task automation

Talk Objectives

•  Overview of several years of research

•  Examples, at various levels of details

•  Follows a research paradigm that is uncommon in software engineering
research

•  Conducted in collaboration with industry partners in many application
domains: Automotive, energy, telecom …

•  Lessons learned regarding scalability and cost-effectiveness

8

9

Objective
Function

Search
Space

Search
Technique

  Search to optimize
objective function:
Complete or not,
deterministic or partly
random (stochastic)

  Metaheuristics,
constraint solvers

  Scalability: A small
part of the search
space is traversed

  Model: Guidance to
worst case, high risk
scenarios across space

  Heuristics: Extensive
empirical studies are
required

Research Pattern: Models and Search Heuristics

Early Work: Search-Based Schedulability
Analysis

L. Briand, Y. Labiche, and M. Shousha, 2003-2006

10

•  Real-time scheduling theory
–  Given priorities, execution time, periods (periodic task), minimum

inter-arrival times (aperiodic task), …
–  Is a group of (a)periodic tasks schedulable?
–  Theory to determine schedulability

•  Independent periodic tasks: Rate Monotonic Algorithm (RMA)
•  Aperiodic or dependent tasks: Generalized Completion Time

Theorem (GCTT).
•  GCTT assumes

–  aperiodic tasks equivalent to periodic tasks
•  periods = minimum inter-arrival times

–  aperiodic tasks ready to start at time zero
•  Execution times are estimates

t2
t2

t2

t2

0

2

4

6

8

10

12

14

16

18

20

minimum
interarrival time: 8

Schedulability Theory

11

A Search-based Solution

•  Goal: Make no assumptions and find near deadline misses as
well, identify worst case scenarios

•  Population-based metaheuristic: Genetic Algorithm

•  To automate, based on the system task architecture (UML SPT,
MARTE), the derivation of arrival times for task triggering events
that maximize the chances of critical deadline misses.

12

Aperiodic tasks

Periodic tasks

System

Event 1

Event 2

+
Genetic
Algorithm

=

Arrival times

Event 1

Event 1

Event 2

time

Model as Input

13

UML-MARTE
Model

(Task architecture)

GA

Scheduler
(constraint solver)

• Chromosome
• Fitness evaluation

Task priorities
…

Estimated execution time,
Minimum inter-arrival
time,
…

Arrival/
seeding times

Start times,
Pre-emption

Objective Function

•  Focus on one target task at a time

•  Goal: Guide the search towards arrival times causing the greatest
delays in the executions of the target task

•  Properties:

–  Handle deadline misses
–  Consider all task executions, not just worst case execution

–  Reward task executions so that many good executions do not wind
up overshadowing one bad execution

14

Objective Function II

∑
=

−=
t

jtjt

k

j

deChf
1

,,2)(

t: target task
kt: maximum number of executions of t
e: estimated end time of execution j of target task as determined by
scheduler
d: deadline of execution j of target task

f

e-d
0

15

Case Study

•  Software Engineering Institute (SEI), Naval Weapons Center and IBM’s
Federal Sector Division

•  Hard real-time, realistic avionics application model similar to existing
U.S. Navy and Marine aircrafts

•  Eight highest priority tasks deemed schedulable

•  Our findings suggest three of eight tasks produce systematic deadline
misses

16

0

0

2

0

0

4

7

0

N/A

N/A

3, 9

N/A

N/A

17, 16, 10, 9

1, 29, 23, 2, 28, 27, 32

N/A

Number
of Misses

Value of
 Misses

Weapon Release

Weapon Release Subtask

Radar Tracking Filter

RWR Contact Management

Data Bus Poll Device

Weapon Aiming

Radar Target Update

Navigation Update

Results

Conclusions

•  We devised a method to generate event seeding times for aperiodic
tasks so as identifying deadline miss scenarios based on task design
information

•  Near deadline misses as well! (stress testing)

•  Standard modeling notation (UML/SPT/MARTE)

•  No dedicated, additional modeling compared to what is expected when
defining a task architecture

•  Scalability: GA runs lasted a few minutes on regular PC

•  Default GA parameters, as recommended in literature, work well

•  Large empirical studies to evaluate the approach (heuristics)

•  Similar work with concurrency analysis: Deadlocks, data races, etc.
(Shousha, Briand, Labiche, 2008-2012)

Testing Driven by Environment Modeling

Z. Iqbal, A. Arcuri, L. Briand, 2009-2012

19

•  Three-year project with two industry partners

–  Soft real-time systems: deadlines in order of hundreds of
milliseconds

•  Jitter of few milliseconds acceptable

–  Automation of test cases and oracle generation, environment
simulation

Tomra – Bottle Recycling Machine
WesternGeco – Marine Seismic

Acquisition System

Context'

•  Independent

–  Black-box

•  Behavior driven by environment

–  Environment model

•  Software engineers

•  No use of Matlab/Simulink

•  One model for

–  Environment simulator

–  Test cases and oracles
•  UML profile (+ limited use of

MARTE)

Environment
Simulator

Test cases

Environment Models

Test oracle

Environment'Modeling'and'Simula4on'

Domain'Model'

Behavior'Model'

•  Test cases are defined by

–  Simulation configuration

–  Environment configuration

•  Environment Configuration

–  Number of instances to be created for each component in the
domain model (e.g., the number of sensors)

•  Simulator Configuration

–  Setting of non-deterministic attribute values

•  Test oracle: Environment model error states

–  A successful test case is one which leads the environment into
an error state

Test'Cases'

•  Bring the system state to an error state by searching for appropriate
values for non-deterministic environment attributes

•  Search heuristics are based on fitness functions assessing how
“close” is the current state to an error state

•  Different metaheuristics: Genetic algorithm, (1+1) EA

•  Defining the fitness function based on model information was highly
complex: OCL constraints, combination of many heuristics

•  Industrial case study and artificial examples showed the heuristic
was effective

–  (1+1) EA better than GA

25

Search'Objec4ves'and'Heuris4cs'

•  Evaluates how “good” the simulator configurations are

•  Can only be decided after the execution of a test case

•  Decided based on heuristics: How close was the test case to …

26

•  Approach Level
•  reach an error state?

•  Branch Distance
•  solve the guard on a

branch leading to an error
state?

•  defined search heuristics
for OCL expressions*

•  Time Distance
•  take a time transition that

leads to an error state?

Basic'Ideas'about'the'Fitness'Func4on'

* S. Ali, M.Z. Iqbal, A. Arcuri, L. Briand, "Generating Test Data from OCL Constraints with Search Techniques", forthcoming in IEEE
Transactions on Software Engineering

Constraint Optimization to Verify CPU Usage

S. Nejati, S. Di Alesio, M. Sabetzadeh, L. Briand, 2012

27

System: fire/gas detection and
emergency shutdown

28

Drivers
(Software-Hardware Interface)

Control Modules Alarm Devices
(Hardware)

Multicore Archt.

Real Time Operating System

Safety Drivers May Overload the CPU

•  Drivers need to bridge the timing gaps
between SW and HW

•  SIL 3

•  Drivers have flexible design

•  Parallel threads communicating in an
asynchronous way

•  Period and watchdog threads

•  Drivers are subject to real-time constraints to
make sure they do not overuse the CPU time,
e.g., “The processor spare-time should not be
less than 80% at any time”

•  Determine how many driver instances to
deploy on a CPU

29

Drivers
(Software-Hardware Interface)

30

Pull Data IODispatch Push Data

Periodic Periodic WatchDog

Delay
(offset)

Small Delay

Large Delay

T2 consumes a lot of CPU time

T2 may blockT1 and/or T3

T1 T3 T2

Deadline misses

CPU overload

Communication protocol
with configurable parameters

Processing
control data

Sending HW
commands

I/O Driver

Safety standards

To achieve SIL levels 3-4,
Stress Testing is “Highly
Recommended”

IEC 61508 is a Safety Standard
including guidelines for Performance
Testing

iec.ch

31

Search Objective

•  Stress test cases: Values for environment-dependent parameters of the
embedded software, e.g., the size of time delays used in software to
synchronize with hardware devices or to receive feedback from the
hardware devices.

•  Goal: select delays to maximize the use of the CPU while satisfying
design constraints.

32

General Approach: Modeling and Optimization

Constraint
Programming

Modeling

Constraint
Program

Stress Test Cases
(Delay values leading to worst

case CPU time usage)

Performance
Requirements

(objective functions)

System design and
platform Model (UML/MARTE)

INPUT

OUTPUT

CP Engine
(COMET)

INPUT

Information Requirements

34

Scheduler

Activity

- preemptive : bool

- min duration(min_d) :int
- max duration (max_d) :int
- delay :int

Processing Unit
- number of cores :int

Global Clock
- time : int

Thread

1.. *

Scheduling
Policy

uses

schedules

1.. *

1

*1
1

*

*

Data dependency ()

- priority :int
- period (p) :int
- min inter-arrival time (min_ia) :int
- max inter-arrival time (max_ia) :int

ordered

Asynch

0..1
*

*

*

temporal precedence()

- Start()
- Finish()
- Wait()
- Sleep()
- Resume()
- Trigger()

Buffer
- size : int0..11.. *
- access()

�t

triggers

Computing Platform Embedded Software Appallocated

1
1

**

Synch

uses
1.. *

0..1

1 *

*

runs *

MARTE: Augmented Sequence Diagrams

35

IOTask Push Data MailBox

Some abstractions are design choices:
delays, priorities…

Pull Data

scan

Some others depend on the
environment: arrival times…

Thread

Buffer

Activity

delay

duration

deadline

COMET input language

Design properties include: threads,
priorities, activities, durations…

Preemptions at regular time periods
(quanta)

Assume negligible context switching
time compared to time quantum

Platform and design properties are
constants in our Constraint Program

Platform and Design Properties modeled in
UML are provided as input in our Constraint

Program
// 1) Input: Time and Concurrency information
int c = ...; // #Cores
int n = ...; range J = 0..n-1; // #Threads
int priority[J] = ...; // Priorities
// ...

// 2) Output: Scheduling variables
dvar int arrival_time[a in A] in T;

 // Actual arrival times
dvar int start[a in A] in est[a]..lst[a];

 // Actual start times
dvar int end[a in A] in eet[a]..let[a];

 // Actual end times
// ...

// 3) Objective function: Performance Requirement
maximize

 sum(a in A)(maxl(0, minl(1,
deadline_miss[a]))); // Deadline misses function

// 4) Constraints: Scheduling policy
subject to {

 forall(a in A) {
 wf4: start[a] <= end[a];

// Threads should end after their start time
 // ...

Threads Properties which can be tuned during
testing are the output of our Constraint Program

Tunable Parameters may include
design and real time properties

Tunable Parameters are variables
in our Constraint Program

Some tunable parameters are the
basis for the definition to stress
test cases (e.g., delays), others
are results from scheduling

// 1) Input: Time and Concurrency information
int c = ...; // #Cores
int n = ...; range J = 0..n-1; // #Threads
int priority[J] = ...; // Priorities
// ...

// 2) Output: Scheduling variables
dvar int arrival_time[a in A] in T;

 // Actual arrival times
dvar int start[a in A] in est[a]..lst[a];

 // Actual start times
dvar int end[a in A] in eet[a]..let[a];

 // Actual end times
// ...

// 3) Objective function: Performance Requirement
maximize

 sum(a in A)(maxl(0, minl(1,
deadline_miss[a]))); // Deadline misses function

// 4) Constraints: Scheduling policy
subject to {

 forall(a in A) {
 wf4: start[a] <= end[a];

// Threads should end after their start time
 // ...

The Performance Requirement is modeled as
an objective function to maximize

We focus on objective functions for
CPU Usage here

Each objective function models a
specific performance requirement

Testing a different performance
requirements only requires to
change the objective function
(constraints)

// 1) Input: Time and Concurrency information
int c = ...; // #Cores
int n = ...; range J = 0..n-1; // #Threads
int priority[J] = ...; // Priorities
// ...

// 2) Output: Scheduling variables
dvar int arrival_time[a in A] in T;

 // Actual arrival times
dvar int start[a in A] in est[a]..lst[a];

 // Actual start times
dvar int end[a in A] in eet[a]..let[a];

 // Actual end times
// ...

// 3) Objective function: Performance Requirement
maximize

 sum(a in A)(maxl(0, minl(1,
deadline_miss[a]))); // Deadline misses function

// 4) Constraints: Scheduling policy
subject to {

 forall(a in A) {
 wf4: start[a] <= end[a];

// Threads should end after their start time
 // ...

Constraints express relationships
between constants and variables

Constraints are independent and can
be modified to fit different platforms,
for example scheduling algorithm

The Platform scheduler and properties are
modeled through a set of constraints

// 1) Input: Time and Concurrency information
int c = ...; // #Cores
int n = ...; range J = 0..n-1; // #Threads
int priority[J] = ...; // Priorities
// ...

// 2) Output: Scheduling variables
dvar int arrival_time[a in A] in T;

 // Actual arrival times
dvar int start[a in A] in est[a]..lst[a];

 // Actual start times
dvar int end[a in A] in eet[a]..let[a];

 // Actual end times
// ...

// 3) Objective function: Performance Requirement
maximize

 sum(a in A)(maxl(0, minl(1,
deadline_miss[a]))); // Deadline misses function

// 4) Constraints: Scheduling policy
subject to {

 forall(a in A) {
 wf4: start[a] <= end[a];

// Threads should end after their start time
 // ...

We run an experiment with real data and
two different objective functions

But optimal solutions were found shortly after the search
started, even if the search took a much more time to terminate

It took a significant amount of
time for the search to terminate

Case Study (Driver)

40

(Time) (Time)

Max: 50%
Max: 50%

Max:550 ms

Max:550 ms

termination time termination timetermination time termination time

(% for cpu usage,
ms for makespan)

(V
al

ue
)

(V
al

ue
)

(% for cpu usage,
ms for makespan)

Fig. 5. The result of maximizing fmakespan and fusage (Section 4) for both parallel and non-
parallel COMET implementations.

usage requirements. To identify the suspicious hardware configurations, however, the
analysis provided in this paper is necessary because the hardware configurations affect
the delay times of the IO drivers activities, and subsequently, the CPU usage estimates.

For example, the size of the delay time at step 3 of the data transfer scenario in
Figure 1(b) can heavily impact the CPU usage. Specifically, the delay time cannot be
so small that IODispatch (Figure 1(a)) keeps the CPU busy for so long that it exceeds
the given CPU usage requirement. Neither can the delay be too large, because then
pullData, which is periodic, may miss its deadline. Specifically it may quickly fill up
the Message Box 1 buffer, which in turn causes pullData to be blocked and waiting
for IODispatch to empty Message Box 1, which is now very slow due to a large delay
time. As a result, pullData may not be able to terminate before its next scan arrival.

To derive stress test cases based on the delay times of the activities, in our formula-
tion in Figure 4, we specify delay as an output variable whose value is bounded within
a range. The search then varies the values of these variables to maximize fmakespan and
fusage . Those combinations that maximize our objective functions are more likely to
stress the system to the extent that the CPU usage requirements are violated.

To perform the above experiment, we implemented the constraint optimization for-
mulation in Figure 4 in COMET Version 2.1.0 [7]. We further used the native support
of COMET for parallel programming to create a distributed version of our COMET im-
plementation that divides the search work-load among different cores. To perform the
experiment, we varied the observation time T from 1s to a few seconds and set the
quantum time (i.e., the minimum time step that a scheduler may preempt activities) to
10 ms. The input model included eight activities belonging to three parallel threads.

Figure 5 shows the result of our experiment, maximizing fmakespan and fusage for
both parallel and non-parallel COMET implementations. In both diagrams, the X-axis
shows the time, and the Y-axis shows the size of fmakespan in ms, and the percentage for
fusage . In our experiment, we used a complete (exhaustive) constraint solver of COMET,
and ran it on a MacBook Pro with a 2.0 Ghz quad-core Intel Core i7 with 8GB RAM.
As shown in the figure, the search terminated in both cases: after around 14 hours for
the non-parallel version, and after around 2 hours and 55 min for the parallel version.
The maximum computed values are: 50% for fusage , and 550 ms for fmakespan . In the
non-parallel case, the maximum result was computed after around 1 hour and 10 min
for fmakespan , and 1 hour and 13 min for fusage . No higher value was found in the
remainder of the search which took more than 14 hours in total. In the parallel case,

13

Conclusions

•  We re-express test case generation for CPU
usage requirements as a constraint
optimization problem

•  Approach:
–  A conceptual model for time abstractions
–  Mapping to MARTE
–  A constraint optimization formulation of

the problem
–  Application of the approach to a real case

study (albeit small)

•  Using a constraint solver does not seem to
scale to large numbers of threads

•  Currently continues this work with Delphi using
metaheuristic search: 430 tasks, powertrain
systems, AUTOSAR

41

Testing Closed Loop Controllers

R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, C. Poull,
2013

42

Complexity'and'amount'of'soDware'used'on'vehicles’''
Electronic'Control'Units'(ECUs)'grow'rapidly''

More functions

Comfort and variety

Safety and reliability

Faster time-to-market

Less fuel consumption

Greenhouse gas emission laws

43

Three'major'soDware'development'stages'in''
the'automo4ve'domain'

44

Major'Challenges'in'MiLKSiLKHiL'Tes4ng''

•  Manual test case generation

•  Complex functions at MiL, and large and integrated
software/embedded systems at HiL

•  Lack of precise requirements and testing Objectives

•  Hard to interpret the testing results
45

MiL'tes4ng'

Requirements

The ultimate goal of MiL testing is to
ensure that individual functions
behave correctly and timely on any
hardware configuration

Individual Functions

46

Main'differences'between'automo4ve'func4on''
tes4ng'and'general'soDware'tes4ng'

•  Continuous behaviour

•  Time matters a lot

•  Several configurations
–  Huge number of detailed physical measures/ranges/

thresholds captured by calibration values

47

A'Taxonomy'of'Automo4ve'Func4ons'

Controlling Computation

State-Based Continuous Transforming Calculating

unit convertors calculating positions,
duty cycles, etc

State machine
controllers

Closed-loop
controllers (PID)

Different testing strategies are required for
different types of functions

48

Controller Plant Model and its Requirements

Plant
Model

Controller
(SUT)

Desired value Error

Actual value

System output+
-

=<

~= 0
>=

time time time

D
es

ire
d

Va
lu

e
&

Ac
tu

al
 V

al
ue

Desired Value
Actual Value

(a) (b) (c)Liveness Smoothness Responsiveness

x

y

z

v

w

49

50

Types'of'Requirements'

SBPC function shall guarantee that the flap will move to and will stabilize
at its desired position within xx ms. Further, the flap shall reach within yy%
of its desired position within zz ms. In addition, after reaching vv% close to
the desired position, the flap shall not jump to a position more than ww%
away from its desired position.

(1) functional/liveness (2) responsiveness/performance

(3) smoothness/safety

xx

zz

yy

<ww

50

51

Search'Elements'

•  Search:

•  Inputs: Initial and desired values, configuration parameters
•  (1+1) EA

 •  Search Objective:

•  Example requirement that we want to test: liveness

  |Desired - Actual(final)|~= 0

For each set of inputs, we evaluate the objective function over the resulting
simulation graphs:

•  Result:

•  worst case scenarios or values to the input variables that are
more likely to break the requirement at MiL level

•  stress test cases based on actual hardware (HiL)

51

MiL-Testing of Continuous Controllers

Exploration+
Controller-
plant model

Objective
Functions

Overview
Diagram

Test
Scenarios

List of
Regions Local SearchDomain

Expert

time

Desired Value
Actual Value

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Initial Desired

Final Desired

52

Generated Heatmap Diagrams

(a) Liveness (b) Smoothness

(c) Responsiveness

53

Random Search vs. (1+1)EA
Example with Responsiveness Analysis

Random (1+1) EA

54

•  We found much worse scenarios during MiL testing than our partner
had found so far

•  They are running them at the HiL level, where testing is much more
expensive: MiL results -> test selection for HiL

•  On average, the results of the single-state search showed significant
improvements over the result of the exploration algorithm

•  Configuration parameters?

•  Need more exploitative or explorative search algorithms in different
subregions

Conclusions'

i.e., 31s. Hence, the horizontal axis of the diagrams in Figure 8 shows the number of
iterations instead of the computation time. In addition, we start both random search and
(1+1) EA from the same initial point, i.e., the worst case from the exploration step.

Overall in all the regions, (1+1) EA eventually reaches its plateau at a value higher
than the random search plateau value. Further, (1+1) EA is more deterministic than ran-
dom, i.e., the distribution of (1+1) EA has a smaller variance than that of random search,
especially when reaching the plateau (see Figure 8). In some regions (e.g., Figure 8(d)),
however, random reaches its plateau slightly faster than (1+1) EA, while in some other
regions (e.g. Figure 8(a)), (1+1) EA is faster. We will discuss the relationship between
the region landscape and the performance of (1+1) EA in RQ3.
RQ3. We drew the landscape for the 11 regions in our experiment. For example, Fig-
ure 9 shows the landscape for two selected regions in Figures 7(a) and 7(b). Specifically,
Figure 9(a) shows the landscape for the region in Figure 7(b) where (1+1) EA is faster
than random, and Figure 9(b) shows the landscape for the region in Figure 7(a) where
(1+1) EA is slower than random search.

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80
0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

(a) (b)

Fig. 9. Diagrams representing the landscape for two representative HeatMap regions: (a) Land-
scape for the region in Figure 7(b). (b) Landscape for the region in Figure 7(a).

Our observations show that the regions surrounded mostly by dark shaded regions
typically have a clear gradient between the initial point of the search and the worst case
point (see e.g., Figure 9(a)). However, dark regions located in a generally light shaded
area have a noisier shape with several local optimum (see e.g., Figure 9(b)). It is known
that for regions like Figure 9(a), exploitative search works best, while for those like Fig-
ure 9(b), explorative search is most suitable [10]. This is confirmed in our work where
for Figure 9(a), our exploitative search, i.e., (1+1) EA with � = 0.01, is faster and more
effective than random search, whereas for Figure 9(b), our search is slower than random
search. We applied a more explorative version of (1+1) EA where we let � = 0.03 to the
region in Figure 9(b). The result (Figure 10) shows that the more explorative (1+1) EA
is now both faster and more effective than random search. We conjecture that, from the
HeatMap diagrams, we can predict which search algorithm to use for the single-state
search step. Specifically, for dark regions surrounded by dark shaded areas, we suggest
an exploitative (1+1) EA (e.g., � = 0.01), while for dark regions located in light shaded
areas, we recommend a more explorative (1+1) EA (e.g., � = 0.03).

6 Related Work
Testing continuous control systems presents a number of challenges, and is not yet sup-
ported by existing tools and techniques [4, 1, 3]. The modeling languages that have been

13

55

Minimizing CPU Time Shortage Risks in
Integrated Embedded Software

S. Nejati, M. Adedjouma

 L. Briand, T. Bruckmann, C. Poull, 2013

56

Today’s'cars'rely'on'integrated'systems'

•  Modular and independent development

•  Huge opportunities for division of labor and
outsourcing

•  Need for reliable and effective integration
processes

57

An'overview'of'an'integra4on'process'in'the''
automo4ve'domain'

AUTOSAR Models
sw runnables

sw runnables AUTOSAR Models

Glue

58

AUTOSAR'captures'the'4ming'proper4es'of'the''
Runnables'and'their'data'dependencies''''

Component Type

Port

Runnable

OS Task

 - period

Internal behaviour

- priority
- cycle

DataRead/
WriteAccess

Interface
DataSend/

ReceivePoint

1 *
1

*

1 1

11

Autosar Models

Autosar Models

sw runnables

sw runnables

OEM

Supplier

Glue Code

OS

Integrated System

Fig. 1. Overview of the Integration Process.

with a lower bound of 2.05ms on the maximum CPU usage.
Our experiments show that our algorithms can automatically
generate offsets such that the maximum CPU usage is as low as
2.14ms. Such a low limit on the maximum CPU usage had not
been previously found by the offset computation algorithms
developed at our partner company, Delphi. In addition, our
approach achieves limits on the maximum CPU usage that are
significantly lower than those found by a random strategy, that
is used as a baseline of comparison. Finally, our approach is
not slower than the baseline strategy.

II. INTEGRATION PROCESS IN THE AUTOMOTIVE DOMAIN

The software components used on modern vehicles’ Elec-
tronic Control Units (ECUs) are rarely developed fully by indi-
vidual ECU suppliers. Rather this kind of development is typ-
ically distributed between suppliers and car makers (OEMs).
This is because OEMs increasingly tend to develop their own
control algorithms as well as basic software components to
ensure optimal software performance for their equipment and
platforms. These components are often treated as proprietary
trade secrets where their executables, i.e., runnables, are only
communicated with the ECU suppliers. Hence, the suppliers
are often left with the complex task of integrating the third-
party runnables with the remaining application and basic
software components, and finally deploying the result on the
ECU hardware. In the end, the suppliers are solely responsible
for the proper functioning and reliability of the ECUs.

In order to overcome the integration challenges, the auto-
motive companies have worked together to develop a stan-
dard basis for collaboration and communication called AU-
Tomotive Open System ARchitecture (AUTOSAR) [13]. Today,
AUTOSAR has become a de-facto open industry standard for
automotive architecture, enabling the modularity and transfer-
ability of control functions implemented as runnables.

Figure 1 shows an overview of the integration process
typically followed in the automotive industry. As shown in
the figure, both suppliers and OEMs provide their software
runnables (executables) along with AUTOSAR descriptions
for these runnables. The AUTOSAR descriptions are then used
to automatically generate glue code whose main function is
to glue together the runnables and coordinate their commu-
nication and their execution on an Operating System (OS).
The glue code specifically uses the AUTOSAR information
about the timing properties of the runnables and their data
dependency relations. Figure 2 represents the AUTOSAR
concepts that are used to generate the glue code. Note that
Figure 2 is a greatly simplified fragment of the original

Component Type

Port

Runnable

OS Task

 - period

Internal behaviour

- priority
- cycle

DataRead/
WriteAccess

Interface
DataSend/

ReceivePoint

1 *
1

*

1 1

11

Fig. 2. AUTOSAR concepts capturing the timing properties of the runnables
and the data dependencies between them.

/* Declarations for variables, runnables, and dependencies */
. . .
/* Initializations, constructors and local functions */
. . .
/* Executing runnables */
Task o1() { /* cycle o1 = 5 ms */

if ((timer mod r1.period) == 0) do /* timer mod 10 == 0 */
execute runnable r1

if ((timer mod r2.period) == 0) do /* timer mod 20 == 0 */
execute runnable r2

if ((timer mod r3.period) == 0) do /* timer mod 100 == 0 */
execute runnable r3

. . .
}
Task o2() {

. . .
Fig. 3. Simplified structure of the glue code in Figure 1.

AUTOSAR metamodel [13]. In AUTOSAR, runnables are the
atomic units of computation. They can be viewed as concur-
rent and communicating threads. In automotive applications,
there are typically many more runnables than the maximum
number of tasks allowed by automotive operating systems
such as OSEK/VDX or AUTOSAR OS [5]. For this reason,
runnables are typically grouped together and scheduled within
a sequencer/dispatcher task called OS task (see Figure 2).
The partitioning of the runnables and the assignment of the
partitions into different OS tasks is done statically by the
suppliers [5]. Each OS task has a cycle that specifies how
often it is invoked by OS, and a priority which determines
whether its execution can be preempted by another OS task.
Each runnable has a period that determines the frequency of its
execution. The period, further, indicates a deadline by which
the runnable has to complete its execution. Since runnables are
invoked by their corresponding OS tasks, their periods must
be divisible by the cycle of their corresponding OS task.

In AUTOSAR, a set of runnables that collectively de-
fine a behavior of a component are referred to as an
internal behaviour of that component. Components have
ports through which they communicate with one another.
The communications between components are implemented
via runnables, and represented by DataRead/WriteAccess, or
DataSend/ReceivePoint in Figure 2. According to AUTOSAR,
DataRead/WriteAccess indicates a non-blocking mode of com-
munication, while DataSend/ReceivePoint refers to a block-
ing communication [13]. Both communications can be either
synchronous or asynchronous. In our work, we refer to both
of these two ways of communications as a data depen-
dency between runnables. Data dependency relations between
runnables are important because they indicate if the runnables
need to synchronize with one another, and if so, in what order
they should run to properly synchronize.

Figure 3 illustrates a simplified overview of the structure of
the glue code in Figure 1. Given an AUTOSAR description,

Runnables Glue Code:

59

60

CPU'Time'Shortage'in'Integrated'Embedded''
SoDware'

•  Challenge
–  Many OS tasks and their many runnables run within a limited

available CPU time
•  The execution time of the runnables may exceed the OS cycles

•  Our goal
–  Reducing the maximum CPU time used per time slot to be

able to
•  Minimize the hardware cost
•  Enable addition of new functions incrementally
•  Reduce the possibility of overloading the CPU in practice

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

✗

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms
✔

(a)

(b)

Fig. 4. Two possible CPU time usage simulations for an OS task with a 5ms
cycle: (a) Usage with bursts, and (b) Desirable usage.

its corresponding glue code starts by a set of declarations
and definitions for components, runnables, ports, etc. It then
includes the initialization part followed by the execution part.
In the execution part, there is one routine for each OS task.
These routines are called by the scheduler of the underlying
OS in every cycle of their corresponding task. Inside each
OS task routine, the runnables related to that OS task are
called based on their period. For example, in Figure 3, we
assume that the cycle of the task o1 is 5ms, and the period
of the runnables r1, r2, and r3 are 10ms, 20ms and 100ms,
respectively. The value of timer is the global system time. Since
the cycle of o1 is 5, the value of timer in the Task o1() routine
is always a multiple of 5. Runnables r1, r2 and r3 are then
called whenever the value of timer is zero, or is divisible by
the period of r1, r2 and r3, respectively.

Although AUTOSAR provides a standard means for OEMs
and suppliers to exchange their software, and essentially
enables the process in Figure 1, the automotive integration
process still remains complex and erroneous. A major inte-
gration challenge is to minimize the risk of CPU shortage
while running the integrated system in Figure 1. Specifically,
consider an OS task with a 5ms cycle. Figure 4 shows two
possible CPU time usage simulations of this task over eight
time slots between 0 to 40ms. In Figure 4(a), there are bursts
of high CPU usage at two time slots at 0ms and 35ms, while
the CPU usage simulation in Figure 4(b) is more stable and
does not include any bursts. In both simulations, the total
CPU usage is the same, but the distribution of the CPU usage
over time slots is different. The simulation in Figure 4(b) is
more desirable because: (1) It minimizes the hardware costs
by lowering the maximum required CPU time. (2) It facilitates
the assignment of new runnables to an OS task, and hence,
enables the addition of new functions as it is typically done in
the incremental design of car manufacturers. (3) It reduces the
possibility of overloading CPU as the CPU time usage is less
likely to exceed the OS task cycle (i.e., 5ms) in any time slot.
Ideally, a CPU usage simulation is desirable if in each time
slot, there is a sufficiently large safety margin of unused CPU
time. Due to inaccuracies in estimating runnables’ execution
times, it is expected that the unused margin shrinks when the
system runs in a real car. Hence, the larger is this margin, the
lower is the probability of exceeding the limit in practice.

In this paper, we study the problem of minimizing bursts
of CPU time usage for a software system composed of a
large number of concurrent runnables. A known strategy to
eliminate high CPU usage bursts is to shift the start time
(offset) of runnables, i.e., to insert a delay prior to the start of
the execution of runnables [5]. Offsets of the runnables must
satisfy three constraints: C1. The offset values should not lead

to deadline misses, i.e., they should not cause the runnables to
run passed their periods. C2. Since the runnables are invoked
by OS tasks, the offset values of each runnable should be
divisible by the OS task cycle related to that runnable. C3. The
offset values should not interfere with data dependency and
synchronization relations between runnables. For example,
suppose runnables r1 and r2 have to execute in the same time
slot because they need to synchronize. The offset values of r1
and r2 should be chosen such that they still run in the same
time slot after being shifted by their offsets.

There are four important context factors that are in line with
AUTOSAR [13], and have influenced our work:

CF1. The runnables are not memory-bound, i.e., the CPU
time is not significantly affected by the low-bound memory
allocation activities such as transferring data in and out of
the disk and garbage collection. Hence, our analysis of CPU
time usage is not affected by constraints related to memory
resources (see Section III-B).

CF2. The runnables are Offset-free [4], that is the offset of
a runnable can be freely chosen as long as it does not violate
the timing constraints C1-C3 (see Section III-B).

CF3. The runnables assigned to different OS tasks are
independent in the sense that they do not communicate with
one another and do not share memory. Hence, the CPU time
used by an OS task during each cycle is not affected by other
OS tasks running concurrently. Our analysis in this paper,
therefore, focuses on individual OS tasks.

CF4. The execution times of the runnables are remarkably
smaller than the runnables’ periods and the OS task cycles.
Typical OS task cycles are around 1ms to 5ms. The runnables’
periods are typically between 10ms to 1s, while the runnables’
execution times are between 10ns = 10�5ms to 0.2ms.

Our goal is to compute offsets for runnables such that the
CPU usage is minimized, and further, the timing constraints,
C1-C3, discussed earlier above hold. This requires solving
a constraint-based optimization problem, and can be done in
three ways: (1) Attempting to predict optimal offsets in a de-
terministic way, e.g., algorithms based on real-time scheduling
theory [6]. In general, these algorithms explore a very small
part of the search space, i.e., worst/best case situations only
(see Section V for a discussion). (2) Formulating the problem
as a (symbolic) constraint model and applying a systematic
constraint solver [14], [15]. Due to assumption CF4 above,
the search space in our problem is too large, resulting in
a huge constraint model that does not fit in memory (see
Section V for more details). (3) Using metaheuristic search-
based techniques [9]. These techniques are part of the general
class of stochastic optimization algorithms which employ
some degree of randomness to find optimal (or as optimal
as possible) solutions to hard problems. These approaches are
applied to a wide range of problems, and are used in this paper.

III. SEARCH-BASED CPU USAGE MINIMIZATION

In this section, we describe our search-based technique for
CPU usage minimization. We first define a notation for our
problem in Section III-A. We formalize the timing constraints,

60

61

We#minimize#the#maximum#CPU#usage#using#runnables##
offsets#(delay#:mes)#

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms

5ms 10ms 15ms 20ms 25ms 30ms 35ms 40ms ✗

✔

Inserting runnables’ offsets

Offsets have to be chosen such that
the maximum CPU usage per time slot is minimized, and further,

 the runnables respect their period
 the runnables respect the OS cycles
 the runnnables satisfy their synchronization constraints

61

62

Meta'heuris4c'search''algorithms'

Case Study: an automotive software system with 430 runnables

Running the system without offsets

Simulation for the runnables in our case study and
corresponding to the lowest max CPU usage found by HC

5.34 ms

Our optimized offset assignment

2.13 ms

-  The objective function is the max CPU usage of a 2s-simulation of runnables
-  The search modifies one offset at a time, and updates other offsets only if

timing constraints are violated
-  Single-state search algorithms for discrete spaces (HC, Tabu)
-  Used restart option to make them more explorative

62

63

Comparing'different'search'algorithms''

(m
s)

(s
)

Best CPU usage

Time to find
Best CPU usage

63

64

Comparing'our'best'search'algorithm'with'Random''
search'

(a) (b) (c)(a)

Lowest max CPU usage values computed by HC within 70 ms
over 100 different runs

Lowest max CPU usage values computed by Random
within 70 ms over 100 different runs

Comparing average behavior of Random and HC in computing
lowest max CPU usage values within 70 s and over 100 different runs

64

65

Conclusions'

-  We developed a number of search
algorithms to compute offset values that
reduce the max CPU time needed

-  Our evaluation shows that our approach is
able to generate reasonably good results
for a large automotive system and in a
small amount of time

-  Due to large number of runnables and the
orders of magnitude difference in
runnables periods and their execution
times, we were not able to use constraint
solvers

65

MDE Projects Overview (< 5 years)

66

Company Domain Objective Notation Automation

ABB Robot controller Testing UML Model traversal for
coverage criteria

Cisco Video conference Testing (robustness) UML profile Metaheuristic

Kongsberg Maritime Fire and gas safety
control system

Certification SysML + req
traceability

Slicing algorithm

Kongsberg Maritime Oil&gas, safety critical
drivers

CPU usage analysis UML+MARTE Constraint Solver

FMC Subsea system Automated
configuration

UML profile Constraint solver

WesternGeco Marine seismic
acquisition

Testing UML profile + MARTE Metaheuristic

DNV Marine and Energy,
certification body

Compliance with safety
standards

UML profile Constraint verification

SES Satellite operator Testing UML profile Metaheuristic

Delphi Automotive systems Testing (safety
+performance)

Matlab/Simulink Metaheuristic

Lux. Tax department Legal & financial Legal Req. QA &
testing

Under investigation Under investigation

Conclusions I

•  Models

–  UML profiles, MARTE, SysML, Matlab/Simulink, AUTOSAR

–  Never UML only: always some tailoring required

–  Always a specific modeling methodology, i.e., how to use the
notation => semantics

–  Driven by

•  Information that is needed to guide automation, e.g., search,
optimization

•  Appropriate level of abstraction: scalability, cost-effectiveness

•  Test/Verification objectives

•  Current modeling practices and skills

•  Reliance on standards

–  Modeling requirements must be “reasonable”, achievable, cost-
effective for engineers

67

Conclusions II

•  Automation

–  Many testing and verification problems can be re-expressed as a
search/optimization problem

–  Search-based software engineering: Enabling automation for hard
problems

–  But limited, though changing, applications to model-driven
engineering

–  Models are needed to guide search and optimization

–  Many search techniques: Search algorithm, fitness function …

–  It is not easy to choose which one to use for a given problem
–  Empirical studies

–  Promising results, scalability (incomplete search)

68

Discussions

•  Constraint solvers (e.g., Comet, ILOG Cplex, SICStus)

–  Is there an efficient constraint model for the problem at hand?

–  Can effective heuristics be found to order the search be found?

–  Better if problem can match a known standard problem, e.g., job
shop scheduling

–  Tend to be strongly affected by small changes in the problem, e.g.,
allowing task pre-emption

•  Model checking

–  Detailed operational models (e.g., state models, CTL),, involving
temporal properties (e.g., CTL)

–  Enough details to analyze statically or execute symbolically

–  These modeling requirements are usually not realistic in actual
system development

–  Originally designed for checking temporal properties, as opposed to
explicit timing properties

69

Discussions II

•  Metaheuristic search

–  Tends to be more versatile, tailorable to a new problem

–  Entail lower modeling requirements

–  Can provide responses at any time, without systematically and
deterministically searching the same part of the space at every run

–  “best solution found within time constraints”, not a proof, no
certainty

–  But in practice (complex) models are not fully correct, there is no
certainty

70

Selected References

•  L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early
schedulability analysis and stress testing in real-time systems”, Genetic
Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

•  M. Shousha, L. Briand, and Y. Labiche, “UML/MARTE Model Analysis Method
for Uncovering Scenarios Leading to Starvation and Deadlocks in Concurrent
Systems”, IEEE Transactions on Software Engineering 38(2), 2012.

•  Z. Iqbal, A. Arcuri, L. Briand, “Empirical Investigation of Search Algorithms for
Environment Model-Based Testing of Real-Time Embedded Software”, ACM
ISSTA 2012

•  S. Nejati, S. Di Alesio, M. Sabetzadeh, L. Briand, “Modeling and Analysis of
CPU Usage in Safety-Critical Embedded Systems to Support Stress Testing”,
ACM/IEEE MODELS 2012

•  Shiva Nejati, Mehrdad Sabetzadeh, Davide Falessi, Lionel C. Briand, Thierry
Coq, “A SysML-based approach to traceability management and design slicing
in support of safety certification: Framework, tool support, and case studies”,
Information & Software Technology 54(6): 569-590 (2012)

•  Lionel Briand et al., “Traceability and SysML Design Slices to Support Safety
Inspections: A Controlled Experiment”, forthcoming in ACM Transactions on
Software Engineering and Methodology, 2013

71

Selected References (cont.)

•  Rajwinder Kaur Panesar-Walawege, Mehrdad Sabetzadeh, Lionel C. Briand:
Supporting the verification of compliance to safety standards via model-driven
engineering: Approach, tool-support and empirical validation. Information &
Software Technology 55(5): 836-864 (2013)

•  Razieh Behjati, Tao Yue, Lionel C. Briand, Bran Selic: SimPL: A product-line
modeling methodology for families of integrated control systems. Information &
Software Technology 55(3): 607-629 (2013)

•  Hadi Hemmati, Andrea Arcuri, Lionel C. Briand: Achieving scalable model-based
testing through test case diversity. ACM Trans. Softw. Eng. Methodol. 22(1): 6
(2013)

•  Nina Elisabeth Holt, Richard Torkar, Lionel C. Briand, Kai Hansen: State-Based
Testing: Industrial Evaluation of the Cost-Effectiveness of Round-Trip Path and
Sneak-Path Strategies. ISSRE 2012: 321-330

•  Razieh Behjati, Tao Yue, Lionel C. Briand: A Modeling Approach to Support the
Similarity-Based Reuse of Configuration Data. MoDELS 2012: 497-513

•  Shaukat Ali, Lionel C. Briand, Andrea Arcuri, Suneth Walawege: An Industrial
Application of Robustness Testing Using Aspect-Oriented Modeling, UML/
MARTE, and Search Algorithms. MoDELS 2011: 108-122

72

