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SnT Software Verification and Validation Lab

« 3SnT centre, Est. 2009: Interdisciplinary, ICT security-reliability-trust

« 180 scientists and Ph.D. candidates, 20 industry partners

« SVV Lab: Established January 2012, www.svv.lu

» 15 scientists (Research scientists, associates, and PhD candidates)

» Industry-relevant research on system dependability: security, safety,
reliability

* Four partners: Cetrel, CTIE, Delphi, SES, ...
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Research Paradigm

» Research informed by practice

« Well-defined problems in context

« Realistic evaluation

« Long term industrial collaborations
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“Model-based”?

« All engineering disciplines rely
on abstraction and therefore
models

* In most cases, it is the only way
to effectively automate testing or
verification

* Models have many other
purposes: Communication,
support requirements and design

 There are many ways to model
systems and their environment

* In a given context, this choice is
driven by the application domain,
standards and practices,
objectives, and skills
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Models in Software Engineering

 Model: An abstract and analyzable description of software artifacts,
created for a purpose

Requirements models Architecture

models Behavioural “A'I»'esf

models models

« Abstract: Details are omitted. Partial representation. Much smaller and
simpler than the artifact being modeled.

 Analyzable: Leads to task automation
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Talk Objectives

Overview of several years of research
Examples, at various levels of details

Follows a research paradigm that is uncommon in software engineering
research

Conducted in collaboration with industry partners in many application
domains: Automotive, energy, telecom ...

Lessons learned regarding scalability and cost-effectiveness




Research Pattern: Models and Search Heuristics _S_M

Model

R —— Objective
. Function

= Search to gptimize
| objective function:
h- e | Complete or not,

, deterministic or partly
random (stochastic)
- = Metaheuristics,
Search constraint solvers

Space w  Scalability: A small
part of the search
space is traversed

= Model: Guidance to
worst case, high risk
scenarios across space

= Heuristics: Extensive
empirical studies are

Search required
Technique

Problem 9

o -
-
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Early Work: Search-Based Schedulability
Analysis

L. Briand, Y. Labiche, and M. Shousha, 2003-2006




ST
Schedulability Theory

« Real-time scheduling theory

— Given priorities, execution time, periods (periodic task), minimum
inter-arrival times (aperiodic task), ...

— Is a group of (a)periodic tasks schedulable?
— Theory to determine schedulability
» Independent periodic tasks: Rate Monotonic Algorithm (RMA)

» Aperiodic or dependent tasks: Generalized Completion Time
Theorem (GCTT).

« GCTT assumes
— aperiodic tasks equivalent to periodic tasks

minimum

* periods = minimum inter-arrival times interarrival time: §
— aperiodic tasks ready to start at time zero
 Execution times are estimates




SIT
A Search-based Solution

* (Goal: Make no assumptions and find near deadline misses as
well, identify worst case scenarios

» Population-based metaheuristic: Genetic Algorithm

« To automate, based on the system task architecture (UML SPT,
MARTE), the derivation of arrival times for task triggering events

that maximize the chances of critical deadline misses. .
lime

Event —

£ ventl\/ Event 2— 1

Genetic

~ " Algorithm Event —
/' |

Event 2 System / Arrival times

12




UML-MARTE
Model

(Task architecture)

ST

Model as Input

Estimated execution time,
Minimum inter-arrival
time,

Task priorities

/GA N

«Chromosome
*Fitness evaluation

(8 /

Start times, Arrival/
Pre-emption seeding times

/Schedu/er

( constraint solver)

g )

13
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Obijective Function

« Focus on one target task at a time
» Goal: Guide the search towards arrival times causing the greatest
delays in the executions of the target task

* Properties:
— Handle deadline misses
— Consider all task executions, not just worst case execution

— Reward task executions so that many good executions do not wind
up overshadowing one bad execution
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Objective Function Il

kl‘
f(Chy = Y 2%
j=1

,_/
< >e-d
0
t: target task

k.: maximum number of executions of t
e: estimated end time of execution j of target task as determined by

scheduler
d.: deadline of execution j of target task

15
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Case Study

Software Engineering Institute (SEI), Naval Weapons Center and IBM’s
Federal Sector Division

Hard real-time, realistic avionics application model similar to existing
U.S. Navy and Marine aircrafts

Eight highest priority tasks deemed schedulable

Our findings suggest three of eight tasks produce systematic deadline
misses
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Results

Number Value of

of Misses Misses
Weapon Release 0 N/A
Weapon Release Subtask 0 N/A
Radar Tracking Filter 0 N/A
RWR Contact Management 2 3,9
Data Bus Poll Device 0 N/A
Weapon Aiming 0 N/A
Radar Target Update 4 17, 16, 10, 9
Navigation Update 7 1,29, 23, 2, 28 27, 32
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Conclusions

« We devised a method to generate event seeding times for aperiodic
tasks so as identifying deadline miss scenarios based on task design
information

* Near deadline misses as well! (stress testing)

« Standard modeling notation (UML/SPT/MARTE)

* No dedicated, additional modeling compared to what is expected when
defining a task architecture

« Scalability: GA runs lasted a few minutes on regular PC
« Default GA parameters, as recommended in literature, work well
« Large empirical studies to evaluate the approach (heuristics)

« Similar work with concurrency analysis: Deadlocks, data races, etc.
(Shousha, Briand, Labiche, 2008-2012)
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Testing Driven by Environment Modeling

Z. Ilgbal, A. Arcuri, L. Briand, 2009-2012




Context Sm

« Three-year project with two industry partners

— Soft real-time systems: deadlines in order of hundreds of
milliseconds

« Jitter of few milliseconds acceptable

— Automation of test cases and oracle generation, environment
simulation

WesternGeco — Marine Seismic
Tomra — Bottle Recycling Machine Acquisition System




Environment Modeling and Simulation SIT

* Independent
— Black-box &‘8 Environment Models
* Behavior driven by environment N i
— Environment model
MAYAY

« Software engineers
* No use of Matlab/Simulink
 One model for
— Environment simulator
— Test cases and oracles

 UML profile (+ limited use of
MARTE) \

S

Test oracle

Environment Test cases
Simulator




Domain Model
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Behavior Model ST
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Test Cases Sm

Test cases are defined by
— Simulation configuration
— Environment configuration
Environment Configuration

— Number of instances to be created for each component in the
domain model (e.g., the number of sensors)

Simulator Configuration
— Setting of non-deterministic attribute values
Test oracle: Environment model error states

— A successful test case is one which leads the environment into
an error state




Search Objectives and Heuristics SIT

« Bring the system state to an error state by searching for appropriate
values for non-deterministic environment attributes

« Search heuristics are based on fitness functions assessing how
“close” is the current state to an error state

« Different metaheuristics: Genetic algorithm, (1+1) EA

« Defining the fitness function based on model information was highly
complex: OCL constraints, combination of many heuristics

* Industrial case study and artificial examples showed the heuristic
was effective

— (1+1) EA better than GA

25



Basic Ideas about the Fitness Function SIT

« Evaluates how “good” the simulator configurations are
« Can only be decided after the execution of a test case
* Decided based on heuristics: How close was the test case to ...

. Approach Level

. reach an error state?

. T after X1, me”
. Branch Distance e o  A—
«  solve the guard on a State! wel O
branch leading to an error v . o after "t2, ms"
state? State? =
. defined search heuristics ‘v ®e2() [x > 0]
for OCL expressions™ State3 | T after "t, ms"
«  Time Distance T e30
[@e30 _ly=20]  «Emors
. take a time transition that 7 stateS TR Emor

leads to an error state?

* 8. Aliy, M.Z. 1gbal, A. Arcuri, L. Briand, "Generating Test Data from OCL Constraints with Search Techniques", forthcoming in IEEE
Transactions on Software Engineering

26
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Constraint Optimization to Verify CPU Usage

S. Nejati, S. Di Alesio, M. Sabetzadeh, L. Briand, 2012




SIT
System: fire/gas detection and v
emergency shutdown

4 _ I
Drivers
(Software-Hardware Interface)
I — R — N — .
|:> ! B i ﬁ |:> {.n b
Control Modules -] J H Alarm Devices
L ' | ) (Hardware)
( Real Time Operating System ]
Multicore Archt. ]

28
e
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Safety Drivers May Overload the CPU

» Drivers need to bridge the timing gaps

between SW and HW ( Drivers A
« SIL3 (Software-Hardware Interface)
 Drivers have flexible design ) o e (=
« Parallel threads communicating in an ’ H
asynchronous way ] U
* Period and watchdog threads . | H
« Drivers are subject to real-time constraints to \_ | v U | )

make sure they do not overuse the CPU time,
e.g., "The processor spare-time should not be
less than 80% at any time”

« Determine how many driver instances to
deploy on a CPU

29



|/O Driver _S____ﬂT

Periodic WatchDog Periodic
T1 | Pull Data T2| |ODispatch T3 Push Data
: : '
> :

1

Delay
(offset)
T >

1

[ >

|

| ' -
Processing Communication protocol Sending HW
control data with configurable parameters commands

Small Delay - -»T2 consumes a lot of CPU time - -» CPU overload

Large Delay - - » T2 may blockT1 and/or T3- - Deadline misses
30
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Safety standards R

IEC 61508 is a Safety Standard
including guidelines for Performance

Testing
\ Table B.6 - Performance testing
(referenced by tables A5 and A 6)
Technique/Mensure* Rer SiL SIL2 SIL3 SiL4

1 Avalanche/siress testing cs21 R R HA HA

2 Response timings and memory consiraints c.522 HR HA HA HAR

3 Performance requirements C.5.1% HR HR HR HR

Appropriate techniques/measures shall be selected according to the satfety integrity level.

iec.ch

To achieve SIL levels 3-4, /

Stress Testing is “Highly
Recommended”
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Search Objective

Stress test cases: Values for environment-dependent parameters of the
embedded software, e.g., the size of time delays used in software to
synchronize with hardware devices or to receive feedback from the
hardware devices.

Goal: select delays to maximize the use of the CPU while satisfying
design constraints.
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General Approach: Modeling and Optimization

Modeling
INPUT |~
UNLEY System design and Ly
M RTE platform Model wmLmARTE) e B
Constraint
Performance o Programming
Requirements :"> Constraint
(objective functions) Program

{ OUTPUT ]

[ Stress Test Cases

(Delay values leading to worst
case CPU time usage)

|
| |
| |
| |
| |
| |
: |
| ﬁ [ CP Engine ? :
| (COMET) |
| |
| |
| |
| |
| |
| |
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Information Requirements

| Computing Platform |

11

allocated

*|
1

Embedded Software App

Processing Unit

_—‘I Scheduler |1_USF* oSS Thread
1 - number of cores :int arion I
1.+ T _ priority  :int
Scheduling runs ¥ triggers | - period (p) sint
Polic 1 0..1 - min inter-arrival time (min_ia) :int
a preemptivey' bool Global Clock - max inter-arrival time (max_ia) :int
. - time : int - Start()
* 1 - Finish()
schedules Activity orderaa @1 Wait()
*| - min duration(min_d) :int - Sleep()
Data dependency (=2) |z 7] - max duration (max_d) :int |~ - Resume()
* - delay :int - Trigger()
1 1.5 M
uses 0..1 temporal precedence( <)
| Synch | [ Asynch | 0.1 Buffer
1., *} = - size :int
- access()

34
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MARTE: Augmented Sequence Diagrams _—

Thread
—— | Pull Data | | IOTask | | MailBox | Push Data
1 |
Scan, ! : Buffer
Some abstractions are design choices: Activity
delays, priorities...
— | delay
l_~

Some others depend on the
environment: arrival times...

deadline
\ .

— 51

A

duration

T S S e I




Platform and Des

UML are provided as input in our Constraint

COMET input language

Design properties include: threads,
priorities, activities, durations...

Preemptions at regular time periods
(quanta)

Assume negligible context switching
time compared to time quantum

Platform and design properties are
constants in our Constraint Program

ign Properties modeled in  §[IT

Program
// 1) Input: Time and Concurrency information
int ¢ = ...; // #Cores
int n = ...; range J = 0..n-1; // #Threads
int priority[J] = ...; // Priorities
// ...

// 2) Output: Scheduling variables

dvar int arrival time[a in A] in T;
// Actual arrival times

dvar int start[a in A] in estl[a]..lstfla];,
// Actual start times

dvar int end[a in A] 1in eetfa]..letla];
// Actual end times

/.

// 3) Objective function: Performance Requirement
maximize

sum(a in A) (maxl (0, minl (1,
deadline miss[a]))); // Deadline misses function

// 4) Constraints: Scheduling policy
subject to {
forall (a in A) {
wf4: startl[a] <= end[a];,;
// Threads should end after their start time
i/
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Threads Properties which can be tuned during
testing are the output of our Constraint Program

// 1) Input: Time and Concurrency information

int ¢ = ...; // #Cores
int n = ...; range J = 0..n-1; // #Threads
. int priority[J] = ...; // Priorities
Tunable Parameters may include /)

deSIQn and real time propertles // 2) Output: Scheduling variables

dvar int arrival time[a in A] in T;

Tunable Parameters are variables ~ // Actual arrival times
. . dvar int start[a in A] in est/l[a]..lstla];,
in our Constraint Program // Actual start times

dvar int end[a in A] in eet/[a]..letla];
// Actual end times
Some tunable parameters are the /...

baSIS for the dEflnltlon to Stress // 3) Objective function: Performance Requirement
test cases (e.g., delays), others maximize
are results from scheduling sum(a in A) (maxl(0, minl(l,

deadline miss([a]))); // Deadline misses function

// 4) Constraints: Scheduling policy
subject to |
forall (a in A) {
wf4: start[a] <= end[a];
// Threads should end after their start time
Y b




The Performance Requirement is modeled as _S____ﬂT
an objective function to maximize

// 1) Input: Time and Concurrency information

int ¢ = ...; // #Cores
int n = ...; range J = 0..n-1; // #Threads
int priority[J] = ...; // Priorities

We focus on objective functions for |7/ ---

CPU Usage here // 2) Output: Scheduling variables

dvar int arrival time[a in A] in T;
// Actual arrival times

Each objective function models a dvar int startfa in A] in est(a]..Lstja];
specific performance requirement ~ // Actual start times
dvar int end[a in A] in eetf[a]..letla];,;
// Actual end times
Testing a different performance 2y
reCIUirementS Only I’eCIUireS to // 3) Objective function: Performance Requirement
change the objective function maximize , ,
. sum(a in A) (maxl (0, minl (1,
(ConStralntS) deadline miss[a]))); // Deadline misses function

// 4) Constraints: Scheduling policy
subject to |
forall (a in A) {
wf4: start[a] <= end[a];
// Threads should end after their start time
Yo o B0




N

The Platform scheduler and properties are_—
modeled through a set of constraints

// 1) Input: Time and Concurrency information

int ¢ = ...; // #Cores
int n = ...; range J = 0..n-1; // #Threads
Constraints express relationships on ety Il = /) IR

between constants and variables
// 2) Output: Scheduling variables
dvar int arrival time[a in A] in T;

Constraints are independent and can // Actual arrival times

be modified to fit different platforms, | “7°* "¢ S;jf;ﬁuij iiaf; ij;éi]“l“[a]’

for example SChedUIing algorithm dvar int end[a in A] in eet[a]..let[a];
// Actual end times

/.

// 3) Objective function: Performance Requirement
maximize

sum(a in A) (maxl (0, minl (1,
deadline miss([a]))); // Deadline misses function

// 4) Constraints: Scheduling policy
subject to {
forall(a in A) {
wf4: start[a] <= end[a];
// Threads should end after their start time
// ...




SIT
Case Study (Driver) L2

We run an experiment with real data and It took a significant amount of
two different objective functions

time for the search to terminate

Parallel Version /
(% for cpu usage,

ms for makespan) Max:550 ms
9

O OC IO 000 W NV LL0 LY 0030 2¢
(Time)
e (PU Osape 1323 Y4 08 <= Nabetpan 102 544

termination time

/

But optimal solutions were found shortly after the search
started, even if the search took a much more time to terminate 49

termination time
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Conclusions

+ We re-express test case generation for CPU
usage requirements as a constraint
optimization problem

* Approach:
— A conceptual model for time abstractions
— Mapping to MARTE

— A constraint optimization formulation of
the problem

— Application of the approach to a real case
study (albeit small)

* Using a constraint solver does not seem to
scale to large numbers of threads

*  Currently continues this work with Delphi using
metaheuristic search: 430 tasks, powertrain
systems, AUTOSAR
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Testing Closed Loop Controllers

R. Matinnejad, S. Nejati, L. Briand, T. Bruckmann, C. Poull,
2013




Complexity and amount of software used on vehicles’ S[]‘[
Electronic Control Units (ECUs) grow rapidly

Comfort and variety

More functions Safety and reliability

Faster time-to-market Greenhouse gas emission laws

Less fuel consumption 43




Three major software development stages in

the automotive domain

Function Engincering Software Engineering Group
Group ‘
Chent Roquiremants >
. ’ Model customization
Simuink Modeing (EMS/GDI Woranes, oatng point
- 4 10 fix poant)
‘(
Gonoric ’ o
| Some M:nunl Cooe
’ Generation
.\d Inlegraton

MIL Testing \s

v

» Sil Testing

=

C—

=

SN
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Test Engineaning Group

Proparaton'Calibrason

Y

Regression
Testing

Y

' Function Testing
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Major Challenges in MiL-SiL-HiL Testing ST

MATLAB
& SIMULINK

 Manual test case generation

iR T
A

« Complex functions at MiL, and large and integrated
software/embedded systems at HiL

« Lack of precise requirements and testing Objectives

« Hard to interpret the testing results

45




MiL testing §M

Requirements

C.

MATLAB
“SIMULINK

Individual Functions

C.

The ultimate goal of MiL testing is to
ensure that individual functions
behave correctly and timely on any
hardware configuration

46




Main differences between automotive function SIT
testing and general software testing

Sl
o I
- | -
— g ¥ ! ¥
— I | T ep—lale
i
" .
ek

e Continuous behaviour
« Time matters a lot

« Several configurations

— Huge number of detailed physical measures/ranges/
thresholds captured by calibration values

47
E—— ¥



A Taxonomy of Automotive Functions _S_ﬂl

unit convertors  calculating positions, State machi C/osed—/oop N
duty cycles, etc controller. confr'o//ers @

Different testing strategies are required for
different types of functions




Controller Plant Model and its Requirements

ST

Desired Value & Actual Value

Desired value 4 Error | Gontroller Plant |System output
———» —>
~@— (SUT) Model
I Actual value
(@) Liveness (b) Smoothness (c) Responsiveness
‘ l N I =W
ey — ——— iy T ———  —
) - — o o -
4"““«""““"'2& ----------------- PT ¢<‘ ---------------------------- > y>=
<--»
Desired Value
Actual Value
time time time

49



Types of Requirements

C( 1) functional/liveness

ST

(2) responsiveness/performance

SBPC function shall guarantee that the flap will move to and will stabilize
at its desired position within xx ms. Further, the flap shall reach within yy%
of its desired position within zz ms. In_addition, after reaching vv% close to
the desired position, the flap shall not jukap to a position more than ww%

away from its desired position.

(3) smoothness/safety

ya

I< ww

v
9

yyi
<
zZ

50



Search Elements SIH

« Search:
 Inputs: Initial and desired values, configuration parameters
« (1+1) EA

« Search Objective:

« Example requirement that we want to test: liveness
v' |Desired - Actual(final)|~= 0

For each set of inputs, we evaluate the objective function over the resulting
simulation graphs:

* Result:
» worst case scenarios or values to the input variables that are
more likely to break the requirement at MiL level

» stress test cases based on actual hardware (HiL) 51

—



MiL-Testing of Continuous Controllers ST

w

Objective @ e
Functions Domaln Llst of
+ * Exploratlon * Expert R »CLocm Search )= Test_
Controller- Xpe egions Scenarios
plant model
Overwew
Diagram
Graph Builder
Final vs. Initial 1.0
Smocthress ’
09 | Desired Value
Actual Value
. 0 2% 0.8 - ' Initial Desired
1 — —
030 ’ U-/— \
0.7
06 ‘ ‘.
.
¢ 05 || '
04 o
o3 4 g l
R Final Desired




Generated Heatmap Diagrams ST

[ Y LN

(a) Liveness (b) Smoothness

1.0 10

(c) Responsiveness
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Random Search vs. (1+1)EA
Example with Responsiveness Analysis

ST
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Conclusions SNT

 We found much worse scenarios during MiL testing than our partner
had found so far

« They are running them at the HiL level, where testing is much more
expensive: MiL results -> test selection for HiL

* On average, the results of the single-state search showed significant
improvements over the result of the exploration algorithm

« Configuration parameters?

» Need more exploitative or explorative search algorithms in different
subregions

(a) (b)
040 - :

s

S | Tracking
0.0150
00156

0.0161
0.0167
00172
0.0178

039

oo
TR
88832

038

0.37

coooo
gREsy
83288
o o
o N
L

0.36

0.35

0.34

0.33

0.32

0.31

0.30 0.10 *

070 071 072 073 074 0.75 0.76 0.77 0.78 0.79 0.80 090 091 0.92 093 094 095 096 097 0.98 0.99 1.00 55



ST

Minimizing CPU Time Shortage Risks in
Integrated Embedded Software

S. Nejati, M. Adedjouma
L. Briand, T. Bruckmann, C. Poull, 2013




Today’s cars rely on integrated systems ST

 Modular and independent development

* Huge opportunities for division of labor and
outsourcing

« Need for reliable and effective integration

processes
57



An overview of an integration process in the SIT

automotive domain

Original Equipment Manufacturer

4

AUTOSAR Models

sw runnables

- > Glue
AUTOSAR Models r
‘ sw runnables
DelLPHI

Automotive Systems

58




AUTOSAR captures the timing properties of the
Runnables and their data dependencies

Component Type | x| Internal behaviour
’ 1 OS Task
Interface - priority
1 Port ReceivePoint
1 1 :
Runnable
DataRead/ -
- period
WriteAccess & -p
Task_o1() { /* cycle_o; = 5 ms */
if ( (timer mod r;.period) == 0) do /* thper Ynod 10 == 0 */

Runnables Glue Code:

—

execute runnable ¢
if ( (timer mod r5.period) == 0) do /* tim¢r mod 20 == 0 */
execute runnable ro
if ( (timer mod r3.period) == 0) do /* timer mod 100 == 0 */
execute runnable r3

Task_o02() {

ST

59




CPU Time Shortage in Integrated Embedded SIT
Software T

(@) . - - — - — — X

5ms 10ms 15ms 20ms 25ms 30ms 35ms  40ms
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« Challenge
— Many OS tasks and their many runnables run within a limited
available CPU time

» The execution time of the runnables may exceed the OS cycles

* Qur goal
— Reducing the maximum CPU time used per time slot to be
able to
* Minimize the hardware cost
» Enable addition of new functions incrementally
» Reduce the possibility of overloading the CPU in practice 60
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We minimize the maximum CPU usage using runnables_S_l_l_I

offsets (delay times)

Inserting runnables’ offsets

>

ﬁ | ] | ] | ] | | ] ]
\
g % 15ms 20ms 25ms 30ms 35ms 40ms
| ] | | | | | |

X

Sms 10ms 15ms jOms 25ms 3bms 33ms 4~0ms

Offsets have to be chosen such that
the maximum CPU usage per time slot is minimized, and further,
the runnables respect their period
the runnables respect the OS cycles
the runnnables satisfy their synchronization constraints

>

v




Meta heuristic search algorithms _S_M

- The objective function is the max CPU usage of a 2s-simulation of runnables

- The search modifies one offset at a time, and updates other offsets only if
timing constraints are violated

- Single-state search algorithms for discrete spaces (HC, Tabu)

- Used restart option to make them more explorative

Case Study: an automotive software system with 430 runnables

S 10 15 20 25 30 35 &0 45 S0 S5 60 65 W0 5

80 85 90 %5 6 2

Runnini the sistem without oﬁisets Our optimized offset assignment
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Comparing our best search algorithm with Random  §||T
search m—y—

Lowest max CPU usage values computed by HC within 70 ms Lowest max CPU usage values computed by Random Comparing average behavior of Random and HC in computing
over 100 different runs (b) within 70 ms over 100 different runs (c), . lowest max CPU usage values within 70 s and over 100 different runs
a3 18

(a) 33

32+

o) —Random
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Conclusions

We developed a number of search
algorithms to compute offset values that
reduce the max CPU time needed

Our evaluation shows that our approach is
able to generate reasonably good results
for a large automotive system and in a
small amount of time

Due to large number of runnables and the
orders of magnitude difference in
runnables periods and their execution
times, we were not able to use constraint
solvers
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« Models

UML profiles, MARTE, SysML, Matlab/Simulink, AUTOSAR
Never UML only: always some tailoring required

Always a specific modeling methodology, i.e., how to use the
notation => semantics

Driven by
* Information that is needed to guide automation, e.g., search,
optimization
» Appropriate level of abstraction: scalability, cost-effectiveness
« Test/Verification objectives
« Current modeling practices and sKills
* Reliance on standards

Modeling requirements must be “reasonable”, achievable, cost-
effective for engineers
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e Automation

Many testing and verification problems can be re-expressed as a
search/optimization problem

Search-based software engineering: Enabling automation for hard
problems

But limited, though changing, applications to model-driven
engineering

Models are needed to guide search and optimization

Many search techniques: Search algorithm, fitness function ...
It is not easy to choose which one to use for a given problem
Empirical studies

Promising results, scalability (incomplete search)
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Discussions

« Constraint solvers (e.g., Comet, ILOG Cplex, SICStus)
— Is there an efficient constraint model for the problem at hand?
— Can effective heuristics be found to order the search be found?
— Better if problem can match a known standard problem, e.g., job
shop scheduling
— Tend to be strongly affected by small changes in the problem, e.g.,
allowing task pre-emption
* Model checking
— Detailed operational models (e.g., state models, CTL),, involving
temporal properties (e.g., CTL)
— Enough details to analyze statically or execute symbolically
— These modeling requirements are usually not realistic in actual
system development

— Oiriginally designed for checking temporal properties, as opposed to
explicit timing properties

69
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« Metaheuristic search

Tends to be more versatile, tailorable to a new problem

Entail lower modeling requirements

Can provide responses at any time, without systematically and
deterministically searching the same part of the space at every run

“best solution found within time constraints”, not a proof, no
certainty

But in practice (complex) models are not fully correct, there is no
certainty




SHIT

Selected References

L. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms for early
schedulability analysis and stress testing in real-time systems”, Genetic
Programming and Evolvable Machines, vol. 7 no. 2, pp. 145-170, 2006

« M. Shousha, L. Briand, and Y. Labiche, “UML/MARTE Model Analysis Method
for Uncovering Scenarios Leading to Starvation and Deadlocks in Concurrent
Systems”, IEEE Transactions on Software Engineering 38(2), 2012.

« Z.lgbal, A. Arcuri, L. Briand, “Empirical Investigation of Search Algorithms for
Environment Model-Based Testing of Real-Time Embedded Software”, ACM
ISSTA 2012

« S. Nejati, S. Di Alesio, M. Sabetzadeh, L. Briand, “Modeling and Analysis of
CPU Usage in Safety-Critical Embedded Systems to Support Stress Testing”,
ACM/IEEE MODELS 2012

« Shiva Nejati, Mehrdad Sabetzadeh, Davide Falessi, Lionel C. Briand, Thierry
Coq, “A SysML-based approach to traceability management and design slicing
in support of safety certification: Framework, tool support, and case studies’,
Information & Software Technology 54(6): 569-590 (2012)

« Lionel Briand et al., “Traceability and SysML Design Slices to Support Safety
Inspections: A Controlled Experiment”, forthcoming in ACM Transactions on
Software Engineering and Methodology, 2013

71
N



ST

Selected References (cont.)

* Rajwinder Kaur Panesar-Walawege, Mehrdad Sabetzadeh, Lionel C. Briand:
Supporting the verification of compliance to safety standards via model-driven
engineering: Approach, tool-support and empirical validation. Information &
Software Technology 55(5): 836-864 (2013)

» Razieh Behjati, Tao Yue, Lionel C. Briand, Bran Selic: SimPL: A product-line
modeling methodology for families of integrated control systems. Information &
Software Technology 55(3): 607-629 (2013)

* Hadi Hemmati, Andrea Arcuri, Lionel C. Briand: Achieving scalable model-based
testing through test case diversity. ACM Trans. Softw. Eng. Methodol. 22(1): 6
(2013)

 Nina Elisabeth Holt, Richard Torkar, Lionel C. Briand, Kai Hansen: State-Based

Testing: Industrial Evaluation of the Cost-Effectiveness of Round-Trip Path and
Sneak-Path Strategies. ISSRE 2012: 321-330

« Razieh Behjati, Tao Yue, Lionel C. Briand: A Modeling Approach to Support the
Similarity-Based Reuse of Configuration Data. MoDELS 2012: 497-513

« Shaukat Ali, Lionel C. Briand, Andrea Arcuri, Suneth Walawege: An Industrial
Application of Robustness Testing Using Aspect-Oriented Modeling, UML/
MARTE, and Search Algorithms. MoDELS 2011: 108-122

72
N



