End-User Architecting

David Garlan

Carnegie Mellon University, USA

3 February 2012 UC Irvine

In a nutshell...

Many domains require end users to compose functionality to automate tasks, procedures, analyses, etc.

This activity is similar to architecting:

- ► Requires component composition
- ▶ ... within domain-specific styles of construction
- ▶ ... supporting quality attributes such as performance, security, ...

The concepts of software architecture can be applied to end-user composition to provide

- ► Abstractions tailored to the user's domain
- ► Analyses that provide feedback and guidance
- ► Execution support

Success requires a clear understanding of the sociotechnical ecosystem

© David Garlan 2012

2

Background

End-User Developers:

- People who create and execute programs in support of their professional goals, but not as their primary job function
- ► Examples: business analysts, neuroscientists, physicists, intelligence analysts, ...

Assembly of computations by end users:

- ➤ One of the main activities of such end users is to compose heterogeneous computational entities.
- ► Today this requires programming expertise
 - These users spend about 40% of their time doing programming activities. [Howison J., 2011]

© David Garlan 2012

3

Some End-User Composition Domains

<u>Neuroscience</u>: Process brain-imaging data, apply statistical analysis, and generate reports.

<u>Dynamic network analysis</u>: Process unstructured data about an organization/society/community to generate a social-network, and then create reports about communication patterns, key entities, and future trends.

<u>e-Science</u>: Perform scientific experiments using large distributed datasets, including physics, astronomy, chemistry, etc.

<u>Bioinformatics</u>: Perform interactive large-scale genome analysis by combining data from independent queries.

© David Garlan 2012

4

<u>Business Process Management</u>: Compose, analyze, reengineer and execute business processes.

<u>Smart buildings and homes</u>: Monitor, analyze & control building automation, including energy & security.

<u>Personal medicine</u>: Configure the way personal medical information is processed and analyzed.

<u>Digital Audio:</u> Compose virtual audio components to synthesize music.

© David Garlan 2012

5

The Problem

Creating compositions today is difficult for end users:

► Complexity from low-level detail

> For example, parameters, file systems, execution paths, operating systems, data formats, etc.

► Conceptual mismatch

> For example, "Remove Image Noise" as opposed to invoking the specific program(s) to perform this function.

► Lack of support for error detection and resolution

> For example, it is hard to know if a composition will work in advance of executing it, or to determine quality attributes such as performance, security and privacy.

► Lack of support for reuse

 Compositions cannot be easily shared or tailored to new situations.

© David Garlan 2012

6

Example 1: Brain Imaging

The field of brain imaging is an important emerging area, leading to scientific breakthroughs

- ► There exist large repositories of brain imaging data
 - > For example, the Brain Imaging Network (Portugal)
- ► There also exist dozens (if not hundreds) of brain image processing tools
 - > Image recognition, image alignment, filtering, volumetric analytics, mapping, ...
- ► Innovative research in this domain requires that scientists compose these tools and apply them to large data sets
 - There exist large consortiums of scientists working on these problems, who share data, tools, and findings

© David Garlan 2012

7

© David Garlan 2012 4

© David Garlan 2012 5

Example 2: Socio-Cultural Analysis (SCA)

Understand, analyze, and predict relationships in complex social systems

- ► Human "terrain" in military engagement
- ► Criminal activities in a metropolitan area
- ► Business intelligence
- ► Communication of policy changes in cities

Incorporates many theories, tools, approaches

- ► Text/data mining, natural language understanding
- ▶ Network analysis theory, statistics, decision support
- ► Simulation, game-theory

© David Garlan 2012

12

Haiti Earthquake 2010

Analysis of humanitarian relief effort after Haiti earthquake

- ▶ Process public domain news sources
 - > Filter out headers, remove noise, normalize concepts
- ▶ Build and analyze a multi-mode network
 - > People, organizations, places, relationships, times
- ► Answer questions
 - > What organizations were involved and in what way?
 - When did emphasis shift from rescue to finding fresh water?
 - How did local government, NGO, and foreign government relationships affect distribution of relief?

© David Garlan 2012

13

What is Needed

End users need a solution that

- ► Allows them to **compose** existing tools, services, applications, data, and other compositions
- ► Without detailed technical expertise
- ▶ In a language appropriate for their domain
- ► Supported by **construction and execution tools** that allow them to
 - > create and run these computations
 - analyze them for relevant behaviors (such as design errors).

INSIGHT: This is similar to Software Architecture!

© David Garlan 2012

19

What is Software Architecture?

The software architecture of a computing system is the set of structures needed to reason about the system, which comprise software elements, relations among them and properties of both.

© David Garlan 201

21

Software Architecture Today

Recognition of the value of *architects* in software development organizations

Processes for architectural design reviews & **quidance** for architectural documentation

Use of architectural *styles, patterns, product lines, platforms, frameworks*

Tools for creating, analyzing, reusing, and executing architectures

Books/courses on software architecture – such as those delivered in CMU's Master in Software Engineering Program

© David Garlan 2012

23

Architecture Design Tools

Support for domain-specific architecture development

Style design, visualization, compilation, ...

Analysis tools

Component mismatch, performance, reliability, security, ...

Support for multiple views

Code, run-time, deployment, ...

Linkage to organizational processes

Documentation, review, evolution, ...

© David Garlan 2012

24

An End-User Architecture Approach

An architectural approach to end-user composition means

➤ Existing architectural techniques can be used for defining the domain, supporting composition, aiding in understanding trade-offs

Three key elements to the approach

- 1. An architecture layer between the user interface and execution environment supports explicit representation of end-user compositions
- 2. A reusable style that can be specialized for specific domains
- 3. A graphical front end for composition and for analyzing and executing compositions

© David Garlan 2012

25

Architecture Layer Architectural Layer Execution Platform Platforms like SOA, SCA etc Primitives Programs, tools or services

SORASCS Implementation

Built on standard, open-source SOA technologies:

► Apache Tomcat web server

- Provides web-based access to applications and web services
- ▶ Apache CXF
 - Provides method for turning existing Java applications into web services
- ► Apache ODE

- > Provides BPEL execution engine for service orchestrations
- ► SOAP/WSDL for Web Service communication

Currently more than 120 Services and 10 standalone tools integrated.

In use today by US intelligence community

© David Garlan 2012

33

Learning from End-user Architecting

Usually missing from Architecture Design Environments – open areas for research

- Component repositories
- Ways to contribute, find, document, certify, and reuse components
- Can be difficult when you have hundreds of components
- Mismatch repair
 - · Components often do not work together "out of the box"
 - Require ability to detect and repair mismatch
- Packaging and parameterization
 - · Encapsulating common structures and patterns
 - · Being able to easily instantiate these and combine them
- Pedigree, provenance, credibility
- Common problems: tracking results, understanding how well one can trust the outputs

© David Garlan 2012

34

Beyond Architecture: Sustainability

It is not enough to have a good platform, interface, and set of components

To be successful we require sustainability

This, in turn, requires a stable Socio-Technical Ecosystem

A **Socio-Technical Ecosystem (STE)** represents a complex, self-sustaining system including:

- ► Stakeholders of various types
- ► Incentive systems for different stakeholders to participate in the ecosystem
- ▶ Appropriate organizational, governmental (legal), economic, social structures
- ► A technical architecture usually a platform

© David Garlan 2012

35

Modern STEs

Single product-oriented STE

- ► Develops and sells a software product
- ► Architecture: single system, traditional architecture

Product-line STE

- ► Company develops a product line
- ► Architecture: proprietary framework with extension points

Service-oriented STE

- ► Many companies develop services
- ► Architecture: SOA

Platform-oriented STE

- ➤ One organization develops/maintains a platform; third parties create extensions
- ► Architecture: Platform+Plug-ins (Apps)

© David Garlan 2012

38

End-User Architecture STEs

Roles

- ► Tool/service developers
- ► Platform developers/maintainers
- ► End-users
- ► Governance body

Incentive System

▶ What motivates each of these roles to do their part?

External Forces

- ► Government regulation? (e.g., privacy)
- ► Economic benefits? (e.g., charge for tool use)
- Social constraints? (e.g., how does the community interact?)

© David Garlan 2012

39

Example

We constructed a platform for socio-cognitive analysis, shown earlier

- ► Tool/service developers: researchers in sociology, anthropology, social networks
- ▶ Platform developers/maintainers: our research lab
- ► End-users: analysts
- ► Governance body: our research lab

Technically a great success!

Problems

- ► Missing incentive system
- ► Government regulation made widespread use impossible because of certification rules.
- ➤ Social constraints made it difficult to get researchers to provide their tools to us.

© David Garlan 2012

40

Conclusions

- ► End users can create complex systems using architectural abstractions
 - > Matched to domain and computational intuition
 - Analyzed through architectural analysis
 - Automatically translated into low-level code and interactively executed
- ► A framework that promotes such a design can help
 - Reuse standard architectural mechanisms and tools such as architecture styles and analyses
 - > Provide platforms for integration and execution

© David Garlan 2012

41

More conclusions

- ► Experience with end-user architecting suggests some open research issues for architecture tool developers
- ► Long-term success requires a sustainable sociotechnical ecosystem
 - > Incentive systems
 - Governance bodies
 - > Regulatory and legal climate
 - > Organizational and social structures

© David Garlan 2012

42

Acknowledgements

This is joint work* with

- Vishal Dwivedi, Bradley Schmerl, Kathleen Carley
 - · Carnegie Mellon University, USA
- Perla Velasco-Elizondo
 - · Centre for Mathematical Research (CIMAT), Mexico
- José Maria Fernandes
 - · IEETA/DETI, University of Aveiro, Portugal
 - *... supported by grants from the US Dept. of Defense, the National Science Foundation, and the Portuguese government

© David Garlan 2012

43

References

Dwivedi, V., Schmerl, B., Garlan, D., Velasco-Elizondo, P., and Fernandes, J.M. <u>An Architectural Approach to End User Composition</u>. *In Procs of the* 2011 European Conf. on Software Architecture (ECSA).

Schmerl, B., Garlan, D., Dwivedi, V., , Bigrigg, M. and Carley, K. SORASCS: A Case Study in SOA-based Platform Design for Socio-Cultural Analysis. *In Procs of the 33rd International Conf. on Software Engineering* (ICSE) 2011.

Howison, J. and Herbsleb, J. D. <u>Scientific software production:</u> incentives and collaboration. In Proc of the 2011 ACM Conf. on Computer Supported Cooperative Work (CSCW) 2011.

Segal, J.. <u>Some Problems of Professional End Users</u>
<u>Developers.</u> *IEEE Symp. on Visual Languages and Human-Centric Computing (VLHCC '07)*. IEEE Computer Society, 2007.

© David Garlan 2012

44

