
Memory Bloat in the Real World

Harry Xu
UCI ISR Open Forum

05/18/2012

Who Am I

• Recently got my Ph.D.
(in 08/11)

• Interested in (static
and dynamic) program
analysis
– Theoretical

foundations
– Applications

• Recent interest---
software bloat
analysis
 http://www.ics.uci.edu/~guoqingx

Is Today’s Software Fast Enough?

• Pervasive use of large-scale, enterprise-level
applications
– Layers of libraries and frameworks
– Object-orientation encourages excess

• No free lunch anymore from hardware
advances
– The size of software grows faster than the

hardware capabilities (a.k.a. Myhrvold’s Law)

Memory Bloat
Heaps are getting bigger
• Grown from 500M to 2-3G or more in the past few years
• But not necessarily supporting more users or functions

Surprisingly common (all are from real apps):
• Supporting thousands of users (millions are expected)
• Saving 500K session state per user (2K is expected)
• Requiring 2M for a text index per simple document
• Creating 100K temporary objects per web hit

Consequences for scalability, power usage, and performance

Outline

• Anecdotes
– Costs of objects
– Costs of fine-grained modeling

• Goals
– Raise awareness of memory bloat
– Give you a way to make informed tradeoffs

Anecdote 1: Costs of Objects

Q: are objects really cheap in memory?

Another Example

Consequences of Excessive Object Creation

• Case study: Hyracks, a parallel data processing
system written in Java
– Extremely poor packing factor
– Cannot process 1GB input data on a 12 GB heap if

data elements are represented using objects

• Solutions
– Release/remove objects soon after they are used
– Reusing objects
– Using memory in buffers (e.g., java.nio.ByteBuffer)

Anecdote 2: Costs of Fine-Grained Modeling

• Q: What’s the cost of using a java.util.TreeMap

TreeMap

TreeMap

TreeMap

TreeMap

TreeMap

TreeMap

Consequences of Too Many Delegations

• Garbage collection is not free
– Cost of a typical GC algorithm is O (|V| + |E|)

• Hyracks
– SELECT a, COUNT(*) AS FROM b GROUP BY c;
– Using a Java Hashtable for grouping leads to

significantly increased GC time (47% of the total
running time)

• Solutions
– Arrays
– Buffers
– Customized data structures with less delegations

Conclusions

• A lot of things in object-orientation are not as
cheap as we think

• Develop more specialized data types and
operations

• My research targets these problems by
developing language, compiler, and runtime
system support

Acknowledgements

• IBM T. J. Watson Research Center
– Nick Mitchell
– Gary Sevitsky
– Matthew Arnold

• UCI
– Yingyi Bu
– Vinayak Borkar
– Michael Carey

• Ohio State University
– Nasko Rountev
– Tony Yan

• Office: 3212
 Thank You

	Memory Bloat in the Real World
	Who Am I
	Is Today’s Software Fast Enough?
	Memory Bloat
	Outline
	Anecdote 1: Costs of Objects
	Another Example
	Consequences of Excessive Object Creation
	Anecdote 2: Costs of Fine-Grained Modeling
	TreeMap
	TreeMap
	TreeMap
	TreeMap
	TreeMap
	TreeMap
	Consequences of Too Many Delegations
	Conclusions
	Acknowledgements

