
Dependencies and Reflections in

Collaborative Software Engineering

David Redmiles
with Cleidson de Souza, Stephen Quirk, Erik Trainer

redmiles@ics.uci.edu

Background

•! A part of a multi-investigator National Science

Foundation project managed through ISR.

•! With cooperation from NASA, Boeing, and IBM.

•! Leveraging funding from IBM through the Eclipse

Innovation Program, by the Brazilian Government

through a CAPES student grant, and a UCI-ICS
Collaborative Research Initiation Award.

•! And continuing with support from the National

Science Foundation, UCI-ICS, and Hitachi.

Dependencies in Collaboration

•! Communication and coordination breakdowns have negative

 effects on collaborative software development projects

 especially when team members are not collocated.

–! E.g., globally distributed software development

•! Many breakdowns arise over dependencies.

–! I.e.,dependencies among people and between people and artifacts.

•! Traditionally, software engineering techniques support
 managing these dependencies through formal techniques.

•! In reality, participants must additionally employ informal

 techniques to manage dependencies (and navigate the formal

 techniques).

Awareness and Reflections of

 Dependencies
•! Many informal activities pertain to maintaining

 awareness.

•! Therefore we seek to support coordination by

 reflecting social and technical dependencies

 helping software developers to maintain

 awareness of and easily discover these

 dependencies.

•! Our implementation relies primarily on visual

 interfaces.

•! Some are using the term socio-technical congruence
(e.g. ICSE 2008 workshop by Herbsleb et al.)
–! Dependencies in the source-code (technical) create

dependencies between people writing that source-code
(social)

•! Explicit relationship between dependencies and
coordination
–! By minimizing dependencies, reduce required

communication/coordination (Conway 1968, Parnas 1972,
Sosa 2002, Grinter 2003, de Souza, Redmiles 2004, Curtis
1988, Herbsleb and Grinter 1999)

Related Work

Approach

•! Field study (ethnography) of software

organizations

•! Grounded theory analysis

•! Development of stereotypical scenarios

•! Development of software visualizations

(2 versions and counting)

Site 1 - MVP

•! 34 software engineers in 2 sub-teams

–! Developers

–! Quality assurance (V&V)

•! Work together for about 9 years.

•! Do not need to interact with external teams.

•! A non-modular software

–! Changes in one part can affect almost any other

part.

Site 2 - MCW

•! 57 software developers in 5 sub-teams
–! Client, server, test, infrastructure, and leads

•! Work together for about 9 months

•! Do need to interact with several external
teams;
–! Part of a large organization implementing a

software reuse program

•! A modular software based on S.E.’s best
practices (APIs, layers, etc)

Data Collection

•! Semi-Structured Interviews

–! MVP: 8 informants

–! MCW: 15 informants

–! The interview guide was reused

•! Non-participant Observation (Shadowing)

–! MVP: 8 weeks

–! MCW: 11 weeks

Actual Work Practices

•! Learning from Email Notifications; Personal Network; Reading

Email Notifications; Impact Descriptions; Error-Checking; Back

Merges; Partial Check-in’s; Being aware by attending meetings,

engaging in communication; Grouping requirements; Informal

Code Reviews; Holding onto Check-in’s; Notifications;

•! API design review meetings; Sending Email Notifications; Pre-

Testing Activities; Build Document; “Exporting” Developers;

Problem Reports; Formal Code Reviews

•! The reference architecture and APIs; Handling External

Dependencies: APIs and Adaptors

•! Awareness of Evolving Dependencies

–! Managers’ lack of awareness of developers’ social
dependencies

•! Gauging integration progress between team members

•! Assessing the likelihood of meeting deadlines

–! Developers’ lack of awareness of evolving technical
dependencies

•! Whether an API is “being exercised”

•! Planning for last minute changes, re-designs

Scenarios (1-2)

12

•! Finding the right people with whom to talk

–! Developer’s finding the “right” developer

•! Programming against “dummy” implementations

•! Want to find who else is implementing the same code, not who
designed and checked in the interface

–! Developers finding “similar” developers

•! How to use a particular component

•! Identify similar/overlapping work

•! Who will be affected by changes to a component

•! Leverage the needs of others to request changes to a heavily
used component

Scenarios (3-4)

•! Dependency/coordination relationship has not been fully
explored

•! But it should be!

–! Dependencies can be detected by
automated tools

–! Dependencies, and thus coordination,
can change

•! We need tool support

–! The goal of Ariadne is to fill the acknowledged gap between
dependencies and coordination

–! Ariadne automates dependency analysis and collection of
authorship information, and generates
social networks

–! Eclipse plug-in

Responding to Scenarios

Create program dependency graph

Gather authorship information

from CM repository

User associates authors

with code

Link authorship information

to create social dependency graph

Visualize graph

or

Automated Process

Ariadne - Social and Technical Dependencies

among Developers and Components

16

Managers’ Lack of Awareness

Developers’ Lack of Awareness

Finding the “Right” Developer

Finding Similar Developers

Feedback

•! Feedback from open-source developers, running
the tool on whole software project rather than
subsets

•! Problems with social network graphs
–! Layouts are not “geographically” consistent from analysis

to analysis

–! Graphs do not scale well without smart filtering/zooming

–! Difficult to show social and technical dependencies
together

•! Explore alternate visualizations
and evaluations

•! Instead of four different visualizations, one

•! Preserve ease of identify connections in social network
graphs

•! Consistent layouts

•! Showing many data at once, more scalable

•! Evaluation using methods appropriate for visual interfaces
–! Lewis, Polson et al.’s Cognitive Walkthrough, Tufte’s

Information Visualization Principles, Nielsen’s Heuristic
Evaluation

•! Evaluation with real data sets

•! Evaluation with end users

Goals for Alternate Visualization

Content – Problem Context

Photo googled at http://jurmo.us/2007/03/04/work-20-the-empty-cubicle/

Original source from http://www.ebertfest.com/seven/playtime.htm

Implementing Ariadne 2.0

23

Multivariate Analysis

Progression of Graphs to Brackets (1)

Developers Code

Progression of Graphs to Brackets (2)

Developers Code

Stretching the string allows us to see through which artifact

the dependency is established.

Comparisons / Filter by Author

Comparisons / Filter by Artifact

Results

•! Social and technical information is

needed and can be combined in visual

tools

–!Grounded on ethnographic field studies

and user interface evaluation

•! Tools can affect self-coordination and

performance in aware-critical tasks

–! Individual differences can be overcome

31

•! Project managers or researchers

–! Identify key roles played by developers

•! How do roles change over time

–!Determine coordination needs of team

members

•! Software developers

–! Identify the “right developer,” or owner

–!Find out which developers have started to

integrate their code

Potential Users

Further Details of On-going Work

•! Poster: Continuous Coordination within the

 Context of Cooperative and Human Aspects

 of Software Engineering

–! Students: Erik Trainer, UC Irvine/ISR, Roger

 Ripley, UC Irvine/ISR

–! Project Scientist: Ban Al-Ani, UC Irvine, Post-Doc:

 Anita Sarma, CMU (formerly UC Irvine/ISR)

–! Advisors: André van der Hoek, UC Irvine/ISR,

 David F. Redmiles, UC Irvine/ISR

Further Reading

•! http://awareness.ics.uci.edu:8080/ContinuousCoordination/

•! Cleidson R. B. de Souza, Redmiles, D.F. An empirical study of software

developers' management of dependencies and changes, Proceedings of the

30th International Conference on Software Engineering (ICSE08 - Leipzig,

Germany) May 2008, pp. 241-250.

•! Cleidson R. B. de Souza, Quirk, S., Trainer, E., Redmiles, D.F. Supporting

collaborative software development through the visualization of socio-technical

dependencies, Proceedings of the 2005 International ACM SIGGROUP

Conference on Supporting Group Work (GROUP07 - Sanibel Island, FL)

November 2007, pp. 147-156.

•! Redmiles, D., van der Hoek, A., Al-Ani, B., Hildenbrand, T., Quirk, S., Sarma, A.,

Silveira Silva Filho, R., de Souza, C., Trainer, E. Continuous Coordination: A

New Paradigm to Support Globally Distributed Software Development Projects,

WIRTSCHAFTSINFORMATIK, Special Issue on the Industrialization of Software

Development, V. 49, 2007, pp. S28-S38.

