
1

Evolving the Notion of Software
Architecture: Three Dimensions

UC Irvine, ISR Research Forum 2008, June 6

Jan Bosch, Intuit

Overview

• Vem är jag? Wie ben ik? Who am I?
• Introducing Intuit
T ends• Trends

• Software Product Line Architecture
• Architecture for the Ecosystem
• Dynamic Software Architectures
• Conclusion

Intuit Proprietary & Confidential

2

From Research to Industry

Engineering Process
(Intuit, USA)

Industrial
development

?

Head of research lab
(Nokia, Finland)

Industrial
research

Intuit Proprietary & Confidential

Professor of software
engineering

(RuG, Netherlands)
(BIT, Sweden)

Academia
(+ consulting)

Who We Are…

A leading provider of business

Intuit Company Information

g p
and financial management

solutions

• Founded in 1983

• FY 2007 revenue of $2.67 billion

• Intuit is traded on the NASDAQ: INTU

Intuit Proprietary & ConfidentialPage 4

• Employs more than 8,000 people

• Major offices across the U.S. and in Canada and
the United Kingdom

3

Great Brands and Great Products

Intuit Proprietary & ConfidentialPage 5

2
0
0

Fortune top 100 places to workFortune top 100 places to work
2
0
0

2
0
0

2
0

2
0

2
0

6
0
7

0
8

Intuit Proprietary & ConfidentialPage 6

0
0
3

0
0
4

0
0
5

4

Intuit Proprietary & ConfidentialPage 7

Intuit’s Rise to the Top
2007 – No. 1
2006 – No. 1
2005 – No. 1
2004 – No. 3

Did You Know?

FY 2007 Year-to-Date Retail Unit Share

Intuit has Some of the Strongest Brands in Business.Intuit has Some of the Strongest Brands in Business.

78% 79%89%

Intuit Proprietary & ConfidentialPage 8

! 15 million Quicken customers
! Nearly 7 million small businesses are Intuit customers

! More than 14 million federal desktop and Web
TurboTax units (Tax Year 2006)

Source: NPD, company estimates

5

Overview

• Vem är jag? Wie ben ik? Who am I?
• Introducing Intuit
T ends• Trends

• Software Product Line Architecture
• Architecture for the Ecosystem
• Dynamic Software Architectures
• Conclusion

Intuit Proprietary & Confidential

Bioterial age
20 years

Where are we going? How fast?

Industrial age

Information age

360

50 years

Intuit Proprietary & Confidential

6000 BC

Agrarian age

1760

360 years

Time

Source: “The Coming Biotech Age”, Richard W. Oliver- McGraw-Hill

6

Innovation Adoption

*maturity = 50 million users in the US

38 yearstu
ri

ty
*

25 years

10 years

te
ch

n
o

lo
g

y
 m

a
t

y
e
a
rs

13 years

Intuit Proprietary & Confidential

radio phone cable

10 years

internet

5 years

technologies

TV

Trend: software size

• software needs in products constantly increasing

t

100

1000

n
ye

ar
s

pe
r p

ro
du

ct

R&D as percentage of sales is
pushed to unacceptable levels

Intuit Proprietary & Confidential

1990 1995 2000 2005

10

pe
rs

on

7

Trend: systems of systems

systems increasingly need to be integrated with other systems
• Information systems

f l d h b h i l i i– from manual data exchange to behavioural integration
• embedded/technical systems

– from stand-alone to signal exchange to behavioural
integration

Intuit Proprietary & Confidential

Unilateral control of system
functionality is diminishing

Trend: Variability

Variability needs in software are constantly increasing
because

i bili f h i d h d f• variability moves from mechanics and hardware to software
• design decisions are delayed as long as economically feasible

of variation points is increasing

Intuit Proprietary & Confidential

p g
time of binding is constantly delayed

party performing the binding is changing

8

Later Binding

• trend is towards later binding and increased automation

architectural

testing T C F

feature selection &
ciomposition T C F

multi-dimensional
composition of concerns

(e.g. AOP)
T C F

New solutions are needed to
- guarantee system properties
- facilitate post-deployment flexibility
- deal with changing contexts

Intuit Proprietary & Confidential

requirements
engineering

architecture
design

detailed
design implementation producer-site

configuration
installation-site
configuration start-up run-time

architectural
configuration T C F

T C Ftraditional current futurelegend

Software Platforms – The Rules are Changing!

• Scope of platform team R&D
– S40 – 100% of product functionality
– S60 – 60% of product functionalityFrom “The Cathedral”– MAEMO – 30% of product functionality

• Requirements management
– S40 – complete control
– S60 – control, but shared with Symbian, licensees and 3rd party

developers
– MAEMO – only UI is controlled (but not completely), rest is

influence-based

From The Cathedral
to “The Bazaar”

Intuit Proprietary & Confidential

influence-based

• Architectural control
– S40 – complete control
– S60 – major controller, but significant influences elsewhere
– MAEMO – largely through influencing and collaborating with Open-

Source community

9

Overview

• Vem är jag? Wie ben ik? Who am I?
• Introducing Intuit
T ends• Trends

• Software Product Line Architecture
• Architecture for the Ecosystem
• Dynamic Software Architectures
• Conclusion

Intuit Proprietary & Confidential

Software Challenge

increasing SW size increasing variabilityincreasing SW size
per product

develop fewer products

increasing variability

requirements

develop more products

Intuit Proprietary & Confidential 18

Software Product Lines

10

Defining Software Product lines

• Product consists of:
–Product specific components
Sha ed components config ed fo the p od ct–Shared components configured for the product

–Shared components used as is
–Externally developed components

• Software Product Line consists of:
–Software product line architecture
–Shared components
–Commonality and variability model

Intuit Proprietary & Confidential

Commonality and variability model

A Brief History of Software Reuse

Technology orientation
• Module
• Object & classObject & class

Technology and process
• Component
• Object-oriented frameworks

Complete intra-organizational perspective
S ft d t li

Intuit Proprietary & Confidential

• Software product lines

Inter-organizational (or eco-system) perspective
• Open software platforms
• Open-source software communities

11

What Success Looks Like

• Business perspective: SPL technology forms the basis for
“the next S-curve of growth” for the company

• R&D perspective: Order of magnitude richer product • R&D perspective: Order of magnitude richer product
portfolio against stable or slightly increased R&D investment

• Ways to achieve success:
– Product portfolio diversity
– Common user experience for products in the portfolio
– Much more customizable customer products
– Higher quality products due to reliable shared core

Oft i d d t

Intuit Proprietary & Confidential

• Often ignored advantage
– Low opportunity cost of new product experiments
– Improvements become available for all products at once
– Improved productivity due to specialization of teams

Dimensions of SPLs
business strategy

more configurable products

more diverse product portfolio

amount of
sharing

organization

reduce R&D expenditure

common UX across products

reqs. driven by product teams

Intuit Proprietary & Confidential

content

joint roadmapping process

reqs. driven by domain engineering

ecosystem with external and internal partners

12

Focus areas
Vision and early design of processes,
tools and operating mechanisms
Initiate work in the most critical process
areas, i.e. SCM, automated test,
deployment, etc.

Generic Next Gen Adoption Phases

exploration phase

Characteristics
Small investment; no revenue
Prototypes and experimentation
Technology focused

y

Drive scalability of processes and tools
Safeguard architectural integrity through

l t d f t i ff t

initiation phase

build out phase

Sizeable investment; no revenue
First offerings under development
Growing business involvement
Resource shift from current to
next gen platform

Large investment; revenue growing
First offerings in the market; Offerings

dd i k t d d l t

Educate transitioning staff on mindset,
process, tools and architecture
Initiate an engineering “heartbeat”
facilitating coordination and integration
of assets and processes

Intuit Proprietary & Confidential

selected refactoring efforts
Manage domain and software variability

Focus on process optimization
Institutionalize management of
commoditization of functionality
Address design erosion by architectural
refactoring efforts

institutionalized phase

addressing core markets under development
High business involvement
Many resources transitioned to next gen platform

Investment stabilized; high, growing revenue
Core markets covered with next gen offerings
Business views platform as “current gen”
Most resources transitioned to next gen platform

Risks inherent to Reuse Strategies

• Complexity – the “gravity” of software engineering: Reuse can
add complexity by creating dependencies between previously
autonomous organizational units.

• Web of dependencies: Can lead to a “lockstep” evolution model Web of dependencies: Can lead to a lockstep evolution model
in which everyone has to evolve synchronously.

• Coordination cost: dependencies require significant
synchronization and alignment, diminishing the benefits of strategic
reuse.

• Offering integration cost: often the cost of offering integration is
higher than expected due to the complexity of configuring and
integrating the selected shared assets.

• Process & tool divergence: teams with diverging “external”

Intuit Proprietary & Confidential

• Process & tool divergence: teams with diverging external
interfaces, e.g. different release cycles and mechanisms, “creative”
interface management, immature requirements management,
lacking quality management, etc. cause significantly higher offering
creation cost and jeopardize the product line effort.

Strategic reuse creates competitive advantage
as long as we manage to these risks

13

Mitigation Strategies

• Decoupling: replace coordination mechanisms with a uniform
set of architecture and team responsibilities

• Independent deployment: maximize the ability of components Independent deployment: maximize the ability of components
to evolve independently through upward and downward interface
compatibility requirements

• Knowledge management: design for integration, interface
management, documentation and production plans help
consumers be productive against minimal investment

• “Step function” change: as we are at an “inflection point”,
radical change can be imposed, i.e. harmonizing processes and

Intuit Proprietary & Confidential

radical change can be imposed, i.e. harmonizing processes and
tools

• Specialization: Separate development from process and tools
evolution

Proven techniques must be proactively applied to ensure success

Issues While Transitioning

• key issue:
– Adopting SPLs requires changes to all aspects of the

business – this is often ignoredbusiness this is often ignored

• potential issues:
– mismatch between shared components and product needs
– design erosion of shared components
– complex interface
– high degree of “organizational noise”

Intuit Proprietary & Confidential

g g g
– inefficient knowledge management
– evolution causes ripple effects through the R&D organization

14

Decision Dimensions during Adoption

feature
selection

new common
features

architecture
harmonisation

revolutionary
adoption

existing, evolving
components

old, generic
components component

centric

iterative
harmonisation

mixed
responsibility

virtual
team

component
"barter"

shared

only
common
featurescomponent

with plug-in

encompassing
component

Intuit Proprietary & Confidential

organization

p
unit

funding

taxation

licensing/
royalty

component
scoping

Overview

• Vem är jag? Wie ben ik? Who am I?
• Introducing Intuit
T ends• Trends

• Software Product Line Architecture
• Architecture for the Ecosystem
• Dynamic Software Architectures
• Conclusion

Intuit Proprietary & Confidential

15

Building Web 3.0 at Intuit?

“My prediction would be that Web 3.0 will ultimately been seen as applications which are pieced

Intuit Proprietary & Confidential

together. There are a number of characteristics: the applications are relatively small, the data is
in the cloud, the applications can run on any device, PC or mobile phone, the applications are

very fast and they're very customizable. Furthermore, the applications are distributed virally:
literally by social networks, by email. You won't go to the store and purchase them... That's a very

different application model than we've ever seen in computing.”—Eric Schmidt

From Pre-Packaged Offerings to Customer-Assembled

offering

each customer his/her offering

prosumer asset

application

componentized

3rd party asset

Intuit Proprietary & Confidential

platform

traditional

componentized
platform

contemporary

ecosystem
platform

the vision

16

Platform-as-a-Service

Intuit Proprietary & Confidential

Overview

• Vem är jag? Wie ben ik? Who am I?
• Introducing Intuit
T ends• Trends

• Software Product Line Architecture
• Architecture for the Ecosystem
• Dynamic Software Architectures
• Conclusion

Intuit Proprietary & Confidential

17

Assumptions about Architecture

•software architecture is hard to change
•consequently, design architectures carefullyq y, g y

–architecture assessment
–architecture design

•software architecture is static, the stable
part of the system

i fl ibl hit t i d/f t f lif !

Intuit Proprietary & Confidential

inflexible architecture is good/fact of life!

Flexible Architectures?

•why is SW architecture hard to change?
• ignored aspect of the problem
loss of design knowledge vaporizes during• loss of design knowledge – vaporizes during
–architecture design
–component development
–system evolution

hi d i d i i l

Intuit Proprietary & Confidential

! architecture design decisions are lost

18

Example – Fire Alarm System

Scheduler
1. restructuring

2. design rule:

Input

Input

Input Deviation

Deviation
Ouput

Ouput

g
operation tick()

3. design rule: register

at scheduler on creation

Intuit Proprietary & Confidential

Input

Input

Input

Ouput4. design constraint:
tick() exec. time < X ms

5. rationale: least resource consuming
mechanism to achieve concurrency

Architecture Design Decisions

architecture design decisions consists of
•restructuring effectrestructuring effect
•design rules
•design constraints
•rationale - new principles, guidelines, etc.
and are taken in response to

Intuit Proprietary & Confidential

• functional requirements
•quality requirements

19

Dynamic Software Architectures
• Later binding trend also applies to software architecture
• Design decisions are taken in response to functional and
quality requirements
F d i t th d i d b h i f th t i • For dynamic systems, the desired behaviour of the system is
required to change post-deployment

• This requires design decisions to be reversed and/or replaced
• First class representation of design decisions, at run-time,
would facilitate this behaviour

Alternative perspectives

Intuit Proprietary & Confidential

p p
• Variability requirements in software are constantly increasing
• Achieving superior user experience increasingly requires user
specific intelligent behaviour

• Context changes in mobile systems

37

Conclusion

• Vem är jag? Wie ben ik? Who am I?
• Introducing Intuit
T ends• Trends

• Software Product Line Architecture
• Architecture for the Ecosystem
• Dynamic Software Architectures

Intuit Proprietary & Confidential

Software architecture is more important than ever

The notion of architecture needs to evolve
with the needs of the software industry

