On Demand Systems

ISR Annual Research Review

Dr. Alfred Z. Spector Vice President, Services & Software Research IBM Corporation

aspector@us.ibm.com June 17, 2003

Abstract

Over the 50 years of modern computer science, computer systems have had a demonstrated capacity to automate an enormous variety of tasks, and per-tasks costs have been greatly reduced. However, there are a two key challenges on the horizon: 1. In many areas, further declines in transaction costs by traditional means are subject to the laws of diminishing returns. 2. The complexity of infrastructure management threatens to outweigh the benefits of further automation. In this talk, I shall illustrate these two dilemmas and describe a research agenda aimed at them. One foundation of this agenda is process integration with a heavy focus on *continual optimization* -- the application of mathematical techniques to optimize operations at many systemic level and at varying granularities of The other foundation is *autonomic computing* -- worked aimed at time. automating automation. I shall survey some research projects at IBM that are related to these two areas, but attempt also to more broadly describe the overall territory.

aspector@us.ibm.com

IBM Research Division

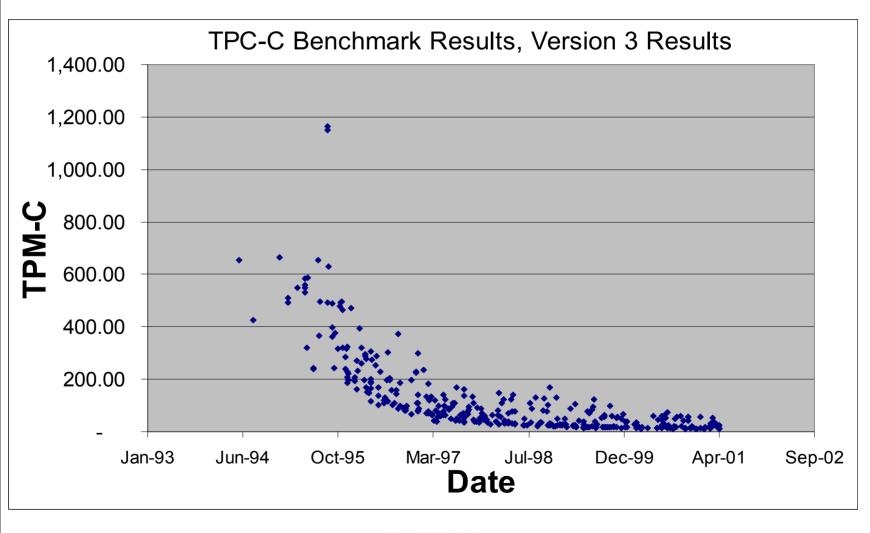
Outline

Computer Science and I/T: Enormous Success, But Two Problems Lurk

- Complexity
- Diminishing Returns in Traditional Computing
- Hence, A Portion of IBM's On Demand Research Agenda:
 - Autonomic Computing
 - Continual Optimization

aspector@us.ibm.com

I/T Success


- Incalculable Benefits
- A key fact has been enormous decline in per-transaction costs
 - From Saber to the Web
 - Increasing
 - Flexibility & Function
 - Decreasing
 - Cost

But, there are limits to these benefits

aspector@us.ibm.com

From WWW.TPC.ORG

aspector@us.ibm.com

However, Complexity is Rising

This seems intuitively right, but

- What do I mean?
- What evidence is there?

aspector@us.ibm.com

3 Categories of Complexity

Classic Complexity Usage Complexity

- Time
- Space
- Implementation Complexity
 - Logical
 - Structural
 - Comprehensibility

Task	Pre- Use	Novice	Middle	Expert	Except- ion
Install					
Configure					
Administer					
Use					

Usage Complexity Must Be Focus

- Consider a humble table (that is, legs and a horizontal surface)
 - Classic Complexity is not relevant as defined but there may be parallels
 - Implementation Complexity very high
 - Physicists do not fully understand tables, I suspect
 - Usage Complexity very low
- While Classic & Implementation Complexity may impact Usage Complexity, they are less important end goals. (In effect, they are tools of Computer Science.)

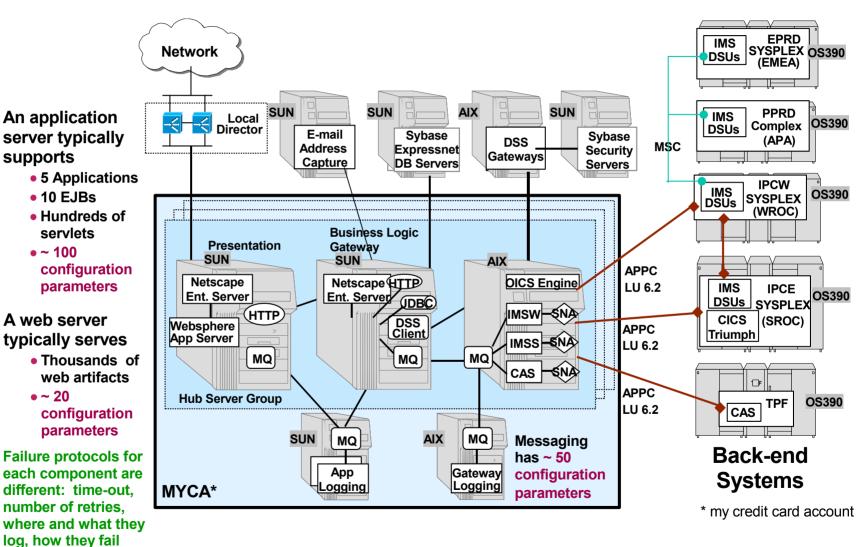
aspector@us.ibm.com

Software Systems Today

- Score high on most metrics:
 - Amount of code
 - # of dependencies
 - # of programmatic interfaces
 - # of layers
 - Administrative interface size & configuration options

- Non-uniformity
- Non-orthogonality
- Defects
- Documentation
- # of programmers involved

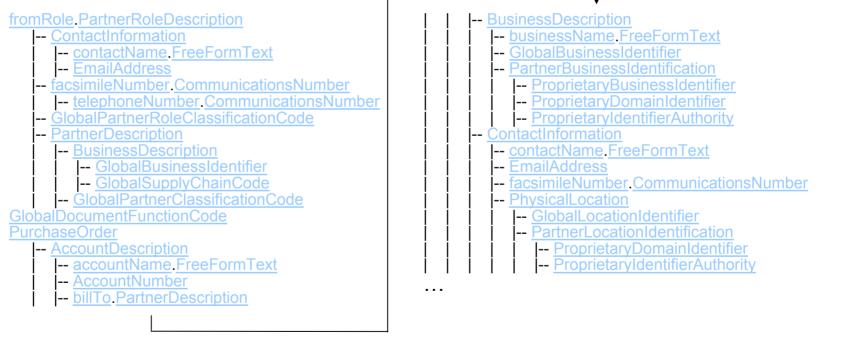
aspector@us.ibm.com


Anecdotes on Systems

- Implementation Complexity:
 - Windows XP Code is tens of millions of lines of code supposedly with circa 10^5-10^6 bugs
 - Cisco Routers have support for more than 100 protocols
- Usage (Administrative) Complexity: Sendmail
 - Access.db, domaintable.db, local-host-names, mailertable.db, submit.cf, ...
 - More than a page of Features, defines, etc for sendmail.cf
 - Longest O'Reilly book, at ~1200 pages
- Usage (Use) Complexity: New BMW 7 Series
 - "But why did those Bavarian motor masters have to ruin a wonderful driving machine by filling it with more gadgets and gizmos than you'd find in the cockpit of a space shuttle? The only thing intuitive is how to open the doors," *Milwaukee Journal Sentinel*, 4/19/2002.

aspector@us.ibm.com

Example: Credit Card Processing


aspector@us.ibm.com

IBM.

RosettaNet Purchase Orders

- There are 551 XML fields in the PurchaseOrderRequest
- There are 700 XML fields in the PurchaseOrderConfirmation

Excerpted First lines of purchase order confirmation:

Note: RosettaNet is a consortium of major companies working to create and implement industrywide, open e-business process standards, that will form a common e-business language, globally aligning processes between supply chain partners. (From RosettaNet Home Page.)

aspector@us.ibm.com

Partial motivation: e-business on demand

- Dramatically decrease administrative complexity of information technology
 - One approach: automation of automation
 - Hence, *Autonomic computing*
- Dramatically increase value of information technology
 - Focus less on the technology
 - More on the impact of technology on the world
 - Hence, Continual Optimization

aspector@us.ibm.com

Autonomic Computing

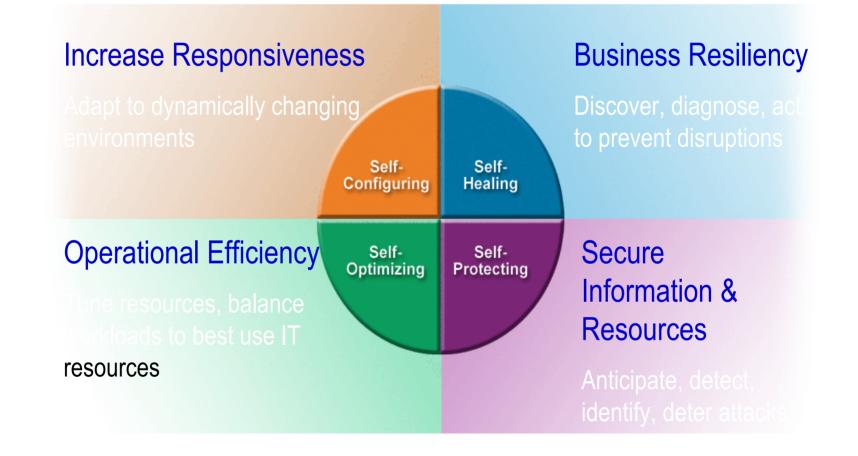
aspector@us.ibm.com

Autonomic Computing Vision

- "Intelligent" open systems that...
 - Manage complexity
 - "Know" themselves
 - Continuously tune themselves
 - Adapt to unpredictable conditions
 - Prevent & recover from failures
 - Provide a safe environment

aspector@us.ibm.com

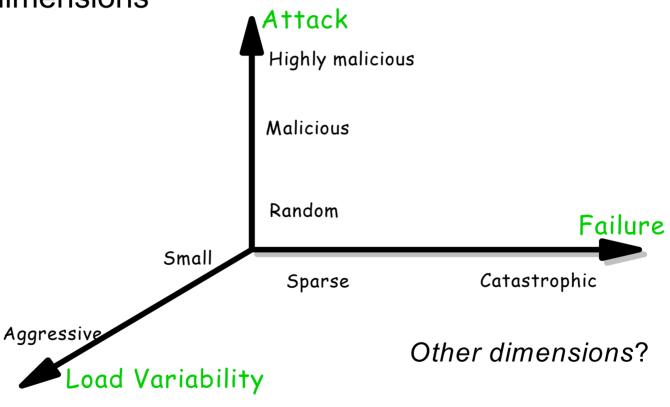
Autonomic Computing Benefits


Increased return on IT investment (ROI)

- Lower administrative costs
- Higher asset utilization
- IT alignment with business goals
- Increased performance
- Improved resiliency: Quality of Service (QoS)
 - Reduced downtime
 - Better security
- Faster implementation of new capabilities: Time to Value (TTV)
 - Faster / more accurate installation
 - Fewer test cycles

aspector@us.ibm.com

Autonomic Self-Management



aspector@us.ibm.com

Science and Technology

 Autonomic computing concept: Making systems robust in the presence of stimuli occurring in different dimensions

aspector@us.ibm.com

	Basic Level 1	Managed Level 2	Predictive Level 3	Adaptive Level 4	Autonomic Level 5
Characteristics	Multiple sources of system generated data				
Skills	Extensive, highly skilled IT staff				
Benefits	Basic Requirement s Met				

Manual

Autonomic

aspector@us.ibm.com

	Basic Level 1	Managed Level 2	Predictive Level 3	Adaptive Level 4	Autonomic Level 5
Characteristics	Multiple sources of system generated data	Data & actions consolidated through mgt tools			
Skills	Extensive, highly skilled IT staff	IT staff analyzes & takes actions			
Benefits	Basic Requirement s Met	Greater system awareness Improved productivity			

Manual

Autonomic

aspector@us.ibm.com

	Basic Level 1	Managed Level 2	Predictive Level 3	Adaptive Level 4	Autonomic Level 5
Characteristics	Multiple sources of system generated data	Data & actions consolidated through mgt tools	Sys monitors correlates & recommends actions		
Skills	Extensive, highly skilled IT staff	IT staff analyzes & takes actions	IT staff approves & initiates actions		
Benefits	Basic Requirement s Met	Greater system awareness Improved productivity	Less need for deep skills Faster/better decision making		

Manual

6/17/03

Autonomic

aspector@us.ibm.com

	Basic Level 1	Managed Level 2	Predictive Level 3	Adaptive Level 4	Autonomic Level 5
Characteristics	Multiple sources of system generated data	Data & actions consolidated through mgt tools	Sys monitors, correlates & recommends actions	Sys monitors, correlates & takes action	
Skills	Extensive, highly skilled IT staff	IT staff analyzes & takes actions	IT staff approves & initiates actions	IT staff <i>manages</i> <i>performance</i> against SLAs	
Benefits	Basic Requirements Met	Greater system awareness Improved productivity	Less need for deep skills Faster/better decision making	Human/system interaction IT agility & resiliency	

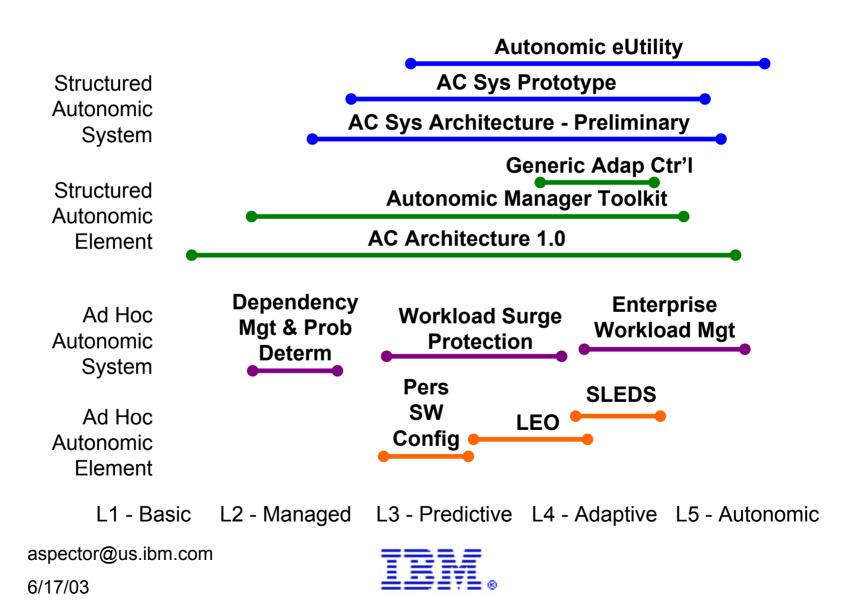
Manual

Autonomic

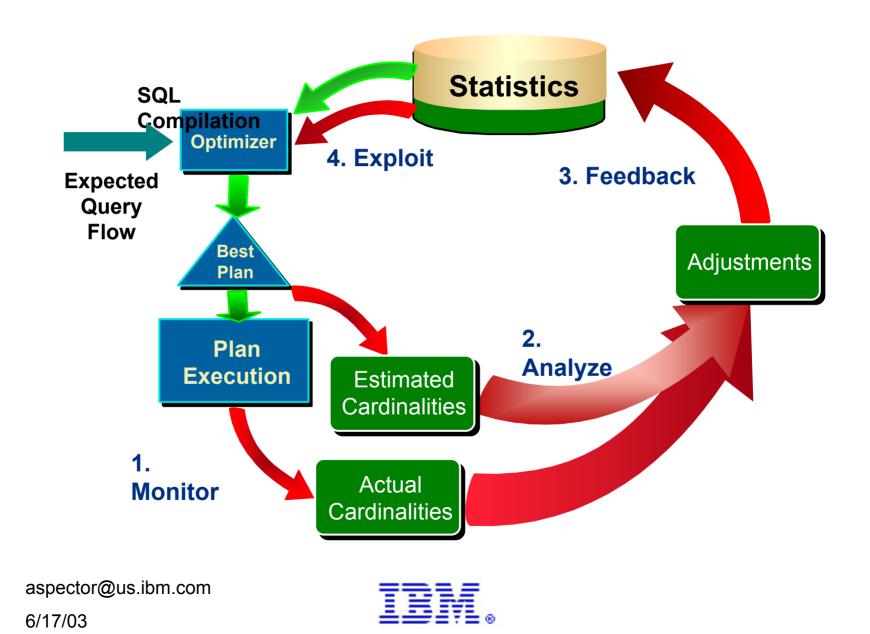
aspector@us.ibm.com

IBM.

	Basic Level 1	Managed Level 2	Predictive Level 3	Adaptive Level 4	Autonomic Level 5
Characteristics	Multiple sources of system generated data	Data & actions consolidated through mgt tools	Sys monitors correlates & recommends actions	Sys monitors correlates & takes action	Components dynamically respond to bus policies
Skills	Extensive, highly skilled IT staff	IT staff analyzes & takes actions	IT staff approves & initiates actions	IT staff <i>manages</i> <i>performance</i> against SLAs	IT staff <i>focuses</i> on enabling business needs
Benefits	Basic Requirement s Met	Greater system awareness Improved productivity	Less need for deep skills Faster/better decision making	Human/system interaction IT agility & resiliency	Business policy drives IT mgt Business agility and resiliency


Manual

aspector@us.ibm.com



Autonomic

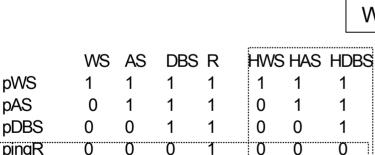
Autonomic Computing Res. Projects

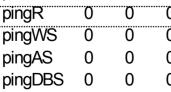
LEarning Optimizer for DB2 (LEO)

Dependency Mgt & Problem Determination

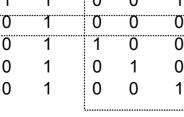
App Server

کلا لا


Router

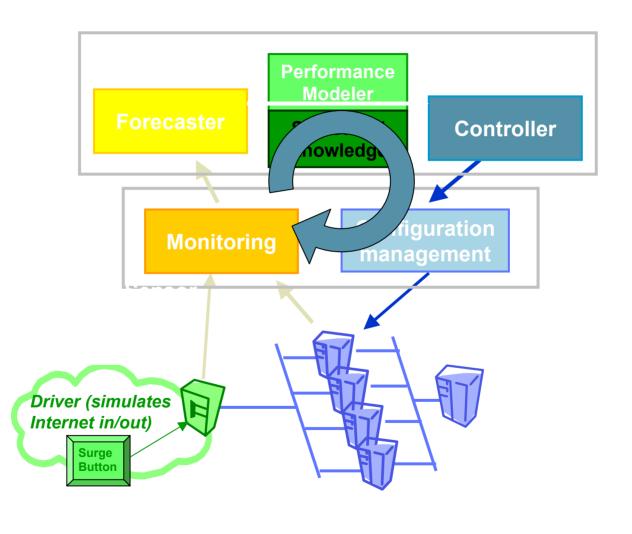

Analysis & Control

DB


Server

- Determine functional dependencies among elements
 - Mine design docs, system config metadata, log files
 - End-to-end probe platform for running system
- Use dependency information for system management
 - Problem localization & remediation
 - Real-time active inference & learning

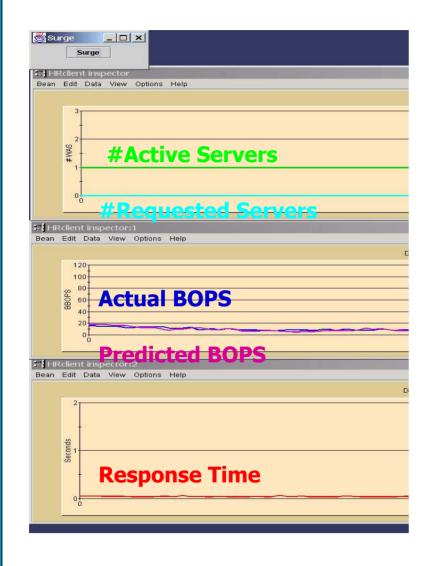
aspector@us.ibm.com


Probe

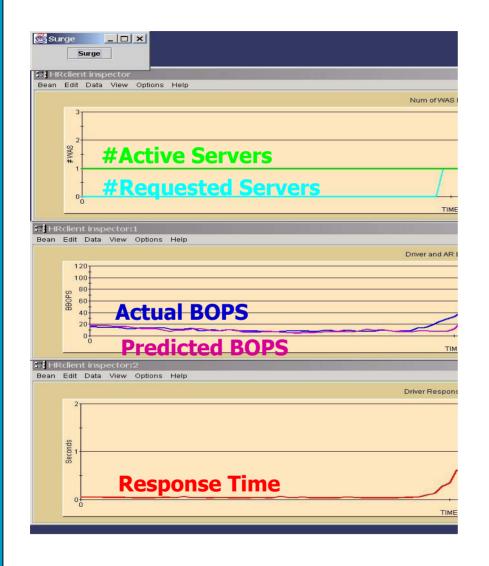
Web Server/

AINS

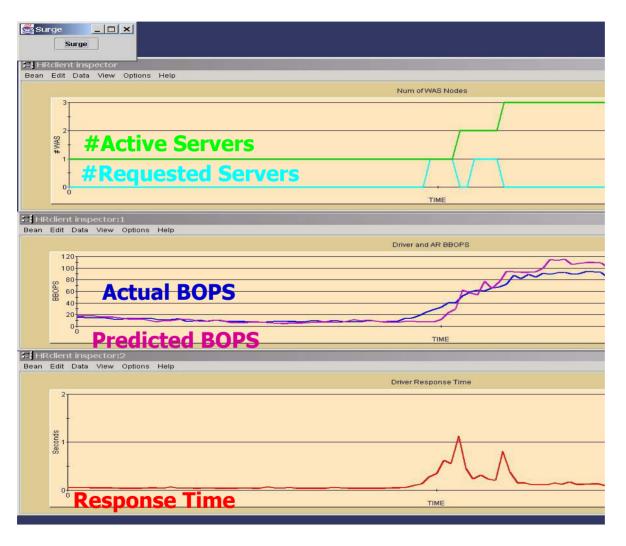
_


Adaptive Workload Surge Protection

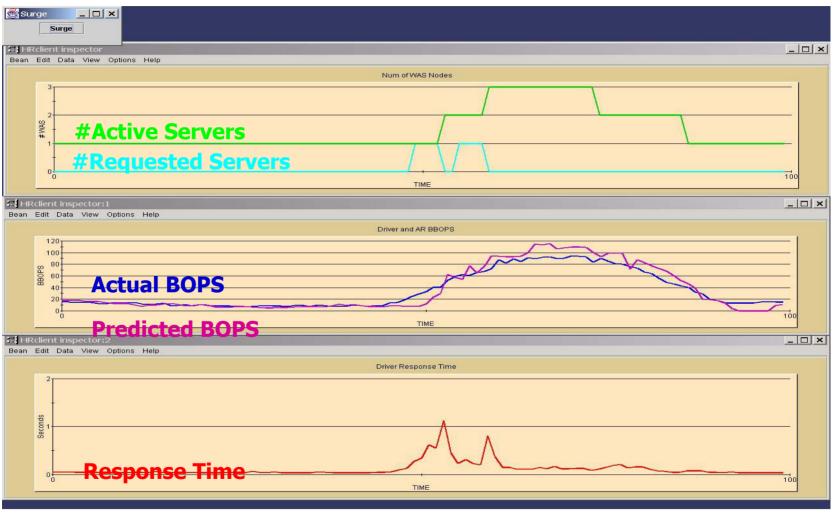
aspector@us.ibm.com


Surge Protection Demo – Steady State

aspector@us.ibm.com


Surge Protection Demo – Surge onset

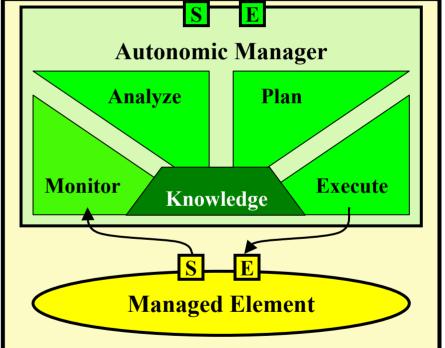
aspector@us.ibm.com


Surge Protection Demo Forecast Surge and Provision Servers

aspector@us.ibm.com

Surge Protection Demo Monitor and Remove Servers

aspector@us.ibm.com


Autonomic Computing Architecture – 1.0

Managed element – provides function

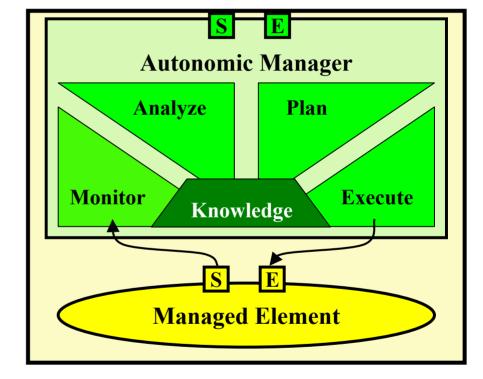
- Basic resource database, storage system, server, software app
- Higher level manages other elements

Autonomic manager – provides mgt

- Monitor gather data
- Analyze assess performance
- Plan determine response
- Execute implement response
- Knowledge state & policies
- Autonomic element
 - Provides/consumes services
 - Interacts w/ other autonomic elements
 - Manages in accordance w/ policies

An Autonomic Element

aspector@us.ibm.com



Autonomic Manager Toolkit

- Facilitates autonomic mgr construction
 - In accordance w/ AC architecture
 - Catcher for generic AM technologies
 - OGSA messaging
 - Policy tools
 - Monitoring technologies
 - AI tools for knowledge representation, reasoning
 - Math libraries for modeling, analysis, planning
 - Feedback control
- V1.0 soon available publicly

aspector@us.ibm.com

6/17/03

An Autonomic Element

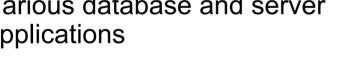
Generic Adaptive Control

- Feedback control to tune effectors
- Based on high-level behavioral specs
 - Multiple goals
 - Multiple effectors —
 - Time-varying demand —
- Various database and server applications

A

Controller

E


KeepAlive

MaxClients

CPU*

Mem*

Apache Server

t

Web service requests

aspector@us.ibm.com

CPU

Mem

Summary – Autonomic Computing Research

- Ad hoc autonomic elements
 - Many valuable prototypes & products built
 - Important lessons learned
 - Continuing research interest
- Ad hoc autonomic systems
 - Some research prototypes functioning
 - Early results valuable
 - Continuing to evolve and improve
- Structured autonomic elements
 - Version 1.0 complete
 - Substantive reviews underway
- Structured autonomic elements
 - Early projects underway
 - Architecture in formative stages

aspector@us.ibm.com

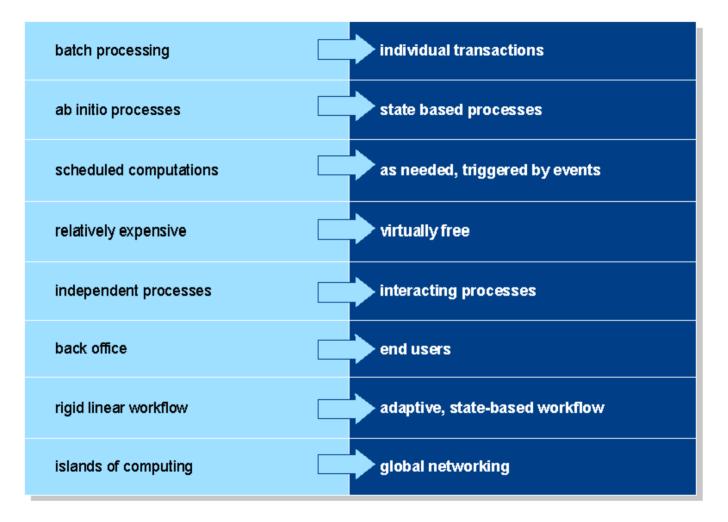
Continual Optimization

IBN «

Continual Optimization

- Almost every resource can almost always be connected
- Most resources' usage can therefore be monitored or changed
- The opportunity for optimization is great
- Continual optimization could fundamentally change how we might lead our lives

aspector@us.ibm.com


2 0

ati

0 p t i m i z

Centinual

Just as Computing has Evolved

Presentation to Georgia Technology Copyright IBM

5

l o n

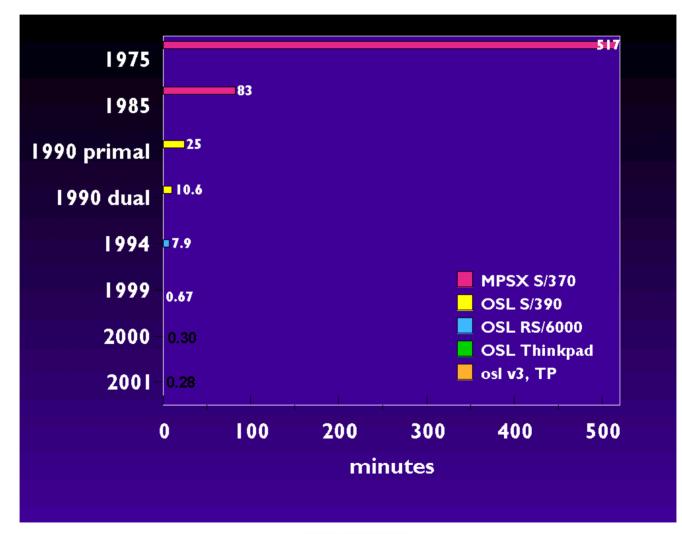
zat

Optimi

____ हर

Centinu

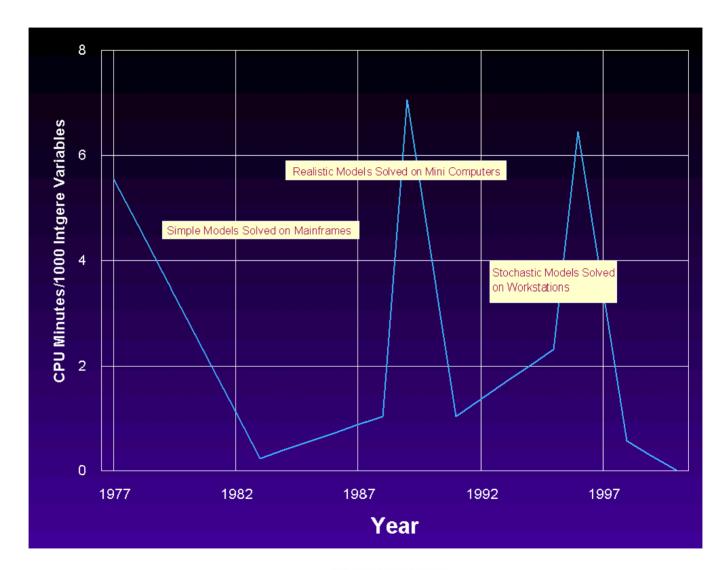
Analytic Computing is Also Evolving


enabling new business applications and business models

large scale analysis for strategic decisions	mixed scale analysis for planning and operational decisions	continuous planning and replenishment in supply chain	
ab initio models and algorithr	state based analysis, to update and adjust plans	personalized B2C web pages	
scheduled analysis with published plan	analysis as needed, triggered by events, only next actions communicated	mobile technician scheduling and dispatching	
relatively expensive	virtually free	complex marketplaces and auctions	
independent static models on separate data	interacting dynamic models, sharing common data and interfaces	replane: airline seat reallocation	
analytic experts in back offic	real-time analysis by end users or agents	fuel optimization for truckers	
deterministic,models with single proven algorithm	stochastic models that are solved by modifiable algorithms	e-commerce fraud detection	
data from isolated, static database	data gathered online from arrays of networked sensors	smart freight instrumented power grid	

Presentation to Georgia Technology Copyright IBM

United Airlines 8 Fleet Problem


aspector@us.ibm.com

Airline Optimization

	Hour						
	noui					DYNAMIC/ADAPTIVE Resource and	
				Short Range Yield Mgt e.g. auctions		Demand management	
Ъ				(Priceline)		- 4 \ 8/ 4/	
a	Dav				Curre	nt Weather	
Planning H	Day	MANUAL Flight schedule repair Flight re-routing Crew schedule repair		LOCAL OPTIMIZATION Flight schedule repair Flight re-routing Crew schedule repair		GLOBAL OPTIMIZATION Flight schedule repair Flight re-routing Crew schedule repair	
Horizon							
J	Month	LOCAL OPTIMIZATION Flight schedules Fleet assignments Plane assignments		GLOBAL OPTIMIZATION Flight schedules Fleet assignments Plane assignments		GLOBAL OPTIMIZATION Flight schedules Fleet assignments Plane assignments	
		Crew schedules				Crew schedules	
		1990		2000		2010	
aspe	ctor@us.ibm.c	om	TR				

Unit Commitment Problem

aspector@us.ibm.com

Optimization Examples

- Season tickets in advance
- Pricing set above MC and to clear the market
- Static binding of resources
- Approximate production optimization
- Opportunistic interpersonal scheduling
- Search for a restaurant while driving on the road

- Notification when you want of events you like
- Pricing based on utility of consumer
- Dynamic resource binding
- Exact Production optimization
- Dynamic interpersonal scheduling
- Be informed of nearby restaurants meeting criteria

aspector@us.ibm.com

Dinner and a Show in the Old Economy

Consumers plan ahead, but also react

- Order Show tickets
 by phone for box
 office pickup
- Phone for restaurant reservations
- Plan travel route using static map data
- React to traffic,
 parking shortages

- Providers: Allocate and sell capacity
 - Pre-allocate blocks of tickets to channels
 - Sell specific seats
 - Allocate tables in advance or FCFS with little care
 - Sell FCFS
 - Broadcast traffic information

Dinner and a Show in the e-Economy

- Consumers: Buy online
 - Order Show tickets by internet, print at home
 - Internet reservations, updates via wireless
 - Determine travel route using current traffic conditions
 - Re-optimize manually in response to traffic, parking shortages

- Providers: Allocate & sell capacity - but closer to the time of use
 - Manage inventory across multiple channel
 - Sell specific seats
 - Allocate tables
 - Maintain dynamic traffic data
 - Sell FCFS

aspector@us.ibm.com

Dinner and a Show w/Continual Optimization

- Consumers: Express preferences, receive complete offers
 - Show, dinner reservations, travel route and parking for a single price
 - All can be reserved ahead of time
 - Special last minute deals available
 - Monitored and reoptimized dynamically (according to customer preferences, of course)

- Providers: Dynamically allocate and aggregate
 - Allocate multiple resources consistently
 - Dynamically manage inventory across multiple channel
 - Sell seats/tables in categories & do late binding of specific seats
 - Supply reservations for parking, travel lanes, etc.
 - Monitor availability & redeploy dynamically in response to disruptions
 - Slack management

aspector@us.ibm.com

A Real Example: Limo Scheduling & Dispatching

- Executive class ground transportation
- Service by owned resources in 7 cities and worldwide through affiliates
- Pride in excellent service record of 98-99% on-time pickups; but at cost of 10-12% request refusal rate at peak times and low utilization of resources
- Customer contacted IBM Research through IBM Innovation Center
- Scheduling problem recognized as a potential match for Continual Optimization initiative
- Integration, middleware, project management, etc. from IBM Business Consulting Services

aspector@us.ibm.com

Project Overview

- Watson Optimization Center developed a Continual Optimization scheduling/dispatching tool for LimoCo
 - Optimizer code delivered in 2Q02
 - Live tests of the system in December
- Project size
 - 5600 lines of custom code
 - + existing optimization libraries
 - + databases, integration and user interfaces by BCS
- Success criteria
 - Current driver utilization ~10% below optimal, believed to cost 30-100M/year.
 - Our solution within 1.5% of optimal (offline); online unknown

aspector@us.ibm.com

Some Details

- Three modes for optimization of driver/vehicle schedules
 - daily "offline"
 - 15 minute "continual"
 - 15 second "instant" on-demand mode
- Minimize costs
- Constraints
 - Schedule all rides if possible (remainder subcontracted)
 - Be on time whenever possible
 - Send licensed vehicle/driver on airport trips, if applicable
 - Send best drivers to VIP passengers
 - Anything else customer dreams up
- Monetary (funny money) penalty if constraint not met
- Multiple depots; some with limited number of vehicles
- All outputs advisory only; dispatcher has final say
- Per city: ~1000 reservations/day, 200 drivers/150cars

aspector@us.ibm.com

Solution Offline and IP solved Within In control

Solution Overview

- Offline and continual modes modelled as integer program
 - IP solved using Optimization Solutions and Library (OSL)
 - Within 1.5% of optimal on 600-ride instance in <5 minutes
 - In continual mode, some variables are fixed; time limits are imposed
- Iterative improvement in instant mode
 - deterministic and randomized hill-climbing heuristics
 - basic idea: try to put unscheduled ride on each driver's schedule; choose cheapest alternative
 - more sophisticated versions
 - repair schedule after user overrides, reservation & real-time updates
- Iterative improvement also used for consistency maintenance
 - take advantage of solution to next continual run
 - with user overrides
 - user's say is final
 - in response to data updates
 - may make current schedule infeasible
- This is a non-trivial part of Continual Optimization

aspector@us.ibm.com

Issues: Communications & Data Infrastructure

- Data
- Transaction management
- Modular, distributed architecture
- Privacy
- Availability
- Scale
- Organizational autonomy
- Ease of use pervasive devices | HCI
- Most significant problem: Business Process Integration

aspector@us.ibm.com

Enormous Question

- How successful will we be with business process modeling and automatic generation of the code
- From strategy to implementation?

Dynamic Allocation Technology

- General questions
 - How dynamic?
 - How optimal?
 - How valuable?
- Allocate resources to customers
- Allocate revenue to providers
- Update allocation in response to changing conditions

aspector@us.ibm.com

New Applications of Known Models/Algorithms

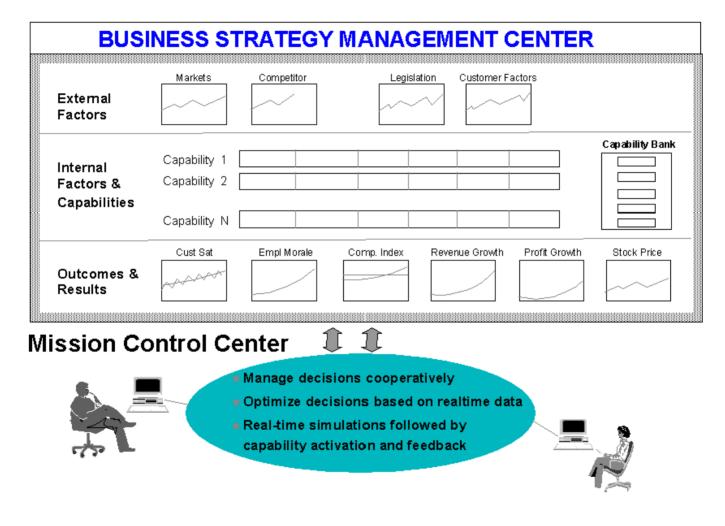
Shortest path problem (single car routing, static network)

Easy, scales almost linearly with network size O(n+m) log m

Time dependent shortest path (speed depends on time of day)

- Expand network to represent time intervals
- Deterministic or Probabilistic
- Dynamic updates based on state

Multiple vehicles with multiple origin-destinations

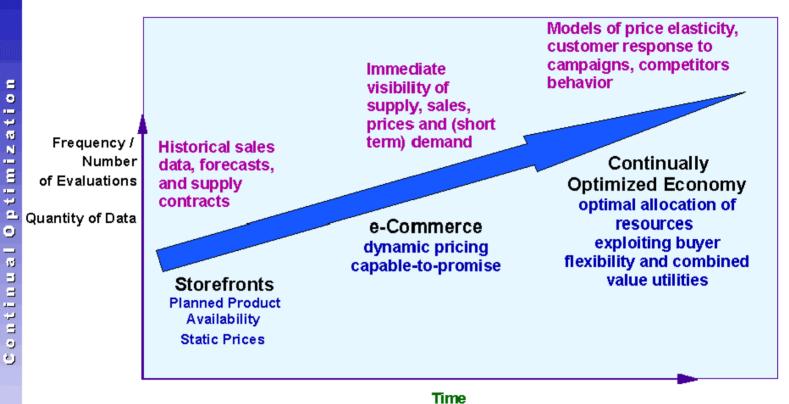

- capacity limits on roads: multi-commodity network flow model: NP-comp
 - Routinely solved for 1000's of links and cars
- Incremental approaches (shortest path subj. to residual capacity) work well
- Integer programming using a column (path) generation approach appears to scale well (1000's of roads and vehicles)
 - adjust speeds according to congestion and resolve

Other resources (parking, restaurant) can use job shop scheduling. Many jobs & machines, but nice structure & few ops/ job

aspector@us.ibm.com

Use of simulation & optimization tools and "active real-time" data for strategic business decisions.

Ξ


0

..... ÷

10

N

Continual Optimization Evolution

Continual optimization, thus, has the potential to greatly increase value of I/T and to change and extend the reach of I/T to many more domains.

> Presentation to Georgia Technology Copyright IBM

aspector@us.ibm.com

Summary and Conclusions

aspector@us.ibm.com

Autonomic Computing

- Subsystem design improved to eliminate manual control
- Core techniques:
 - Control theory
 - Increased use of rules systems; perhaps, with inference & common sense
 - Negotiation
- Standardization of event reporting to provide opportunities for data mining, statistical machine learning, and more feedback control
- Architecture

aspector@us.ibm.com

Continual Optimization

- The connectivity is there
- The transaction costs are there
- The mathematical methods are substantially there
- Can we get over the complexity issues of Business Process Integration to achieve enormous benefit to our field and potentially to society?

aspector@us.ibm.com

Conclusion

- Computing can provide greatly increased value to society
 - But, we must conquer complexity
 - And do more than automate what we previously did manually
- This talk illustrated two important subproblems
- But, there is much more to be done to unlock the value of these wonderful machines without undue complexity and cost

aspector@us.ibm.com

