
UCI Research Forum

A Systems Engineering Perspective of
Aspect-oriented Software Architectural Analysis

Phillip Schmidt, Ph.D.
Phillip.P.Schmidt@aero.org

UCI Research Forum

Agenda

n Our World
n Why a Systems Engineering Perspective?
n REACT
n Architectural Representation Challenges
n Evolving REACT
n Closing Remarks

UCI Research Forum

Our World is Rocket Science!
n Space system architectures growing

increasingly complex
n Highly interdependent legacy subsystems
n Manual inspection of hardcopy designs

ineffective in finding subtle design flaws
n Increasingly difficult to make technical

tradeoff decisions based solely on
qualitative judgments (e.g. within
Integrated Product Teams)

n Architectural representation issues, object-
oriented design technologies applied to
legacy RT embedded systems not well
understood

n Space system architectures exhibit
pressure to evolve
n Desire to improve performance,

functionality, and program success
n New environments
n New services
n New contexts

n Complexity and evolution raise risk

How do we manage
architectural risk?

UCI Research Forum

Challenges
(Early Discovery of Architectural Risks)

Tools

Actual Intended

Weak
architectural

tools

Unconventional,
inconsistent tool

usage

Design
Incompleteness

Ambiguous
Interpretation of

design intentIncompatible
design

Limited
performance

insight; flawed
implementation

Design
evolution

errors

Ascertaining
derived

architectural
information

On-board
failure

Tools

Incomplete
testing

Built-to

UCI Research Forum

Why a System Engineering Perspective?

n Disconnect between Vision and Reality:
n Vision: Architecture is central to supporting program evolution
n Reality: Software architectural representations often

incomplete and inconsistent

n A systems engineering perspective is needed to
recognize and deal with the disconnect

n Architecture is more than
n what UML is today
n what Aspect-oriented programming is today (and will likely

become)
n questions about code

n Architectural representation challenges await
n Aspect-oriented architectural analysis is being used to

tackle these challenges

UCI Research Forum

Real-time Embedded Architecture-Centric Testbed
(REACT)

n Architecture-Centric
n Recognize importance of architectural representation

n Many forms
n Frequent access

n Early discovery/feedback

n Aspect-Oriented Architectural Assessment
n Architectural development exhibits concerns that cut

across object decomposition boundaries
n Support for automated management of concerns

UCI Research Forum

Architecture-Centric

n Receive contractor-provided architecture artifacts
n Unified Modeling Language (UML)
n Other electronic representations

n Automatically extract architectural information
n Conduct architectural assessments

n Prior to code development
n Static Assessment

n consistency/completeness
n Compare “as-designed” to “as-built” representations

n Dynamic Assessment
n Focus on critical execution issues (synchronization, priority tasking, sizing)
n Create simulations of well-formed models
n Understand logical execution behavior of architecture
n Refine/re-parameterize models

n Work closely with program office/contractor
n Work closely with UML vendors

UCI Research Forum

Aspect-Oriented Architectural Analysis

n Idea: Apply aspects over UML architectural domain

Architectural domain
(e.g. UML and other
artifacts)

Programming language
domain (e.g. Java)

Architecturally non-
intrusive; separable via
simulation

Solutions architecturally
intrusive (completeness)

Address static or
dynamic aspects

Address dynamic,
execution impacts

Leverage expression of
cross-cutting concerns

Leverage expression of
cross-cutting concerns

AOAAAOP

UCI Research Forum

Architectural Aspect Types

Log all raised
exceptions;
evaluate pre/post
conditons

Define cross-cutting
concerns that need
to be monitored

Dynamic Assessment
Aspects

Supply model
information based
on ICDs, other
analysis

Add new
architectural
informational detail

Augmentation
Aspects

Collect all event
related information

Derive new or
customized
architectural
information from
UML space

Derivation Aspects

Find all examples
of destroy object
usages

Perform integrity,
consistency checks
over UML space

Static Analysis
Aspects

ExampleDescriptionAspect Type

UCI Research Forum

Real-time Embedded Architecture-Centric Testbed (REACT)
Aspect-Oriented Architectural Assessment

Model
Extractor

UML Architectural
Information

Model
Generator

Architectural
Representation

Dynamic
Assessment

Model
Configuration

Architectural
Representation

Architectural
Representation

Architectural
Representation

Model Executor

Static Analysis
Aspects

Derivation
Aspects

Augmentation
Aspects

Dynamic Analysis
Aspects

UML Architectural
InformationUML Architectural

Information

UML Model Evolution

Dynamic
Assessment

Results
Static

Assessment
Results

Aspect
Translator

UCI Research Forum

Aspects useful in exploring quality concerns

Sequence Diagram X-Y sizes

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000

X size

Y
 s

iz
e

Message interaction
sets too large for

manual inspection

UCI Research Forum

Dynamic Architectural Analysis

UML/XMI REACT
REP

Model Configuration File

Sample Model OutputsAnimated State Execution

Simulation Model

UCI Research Forum

There still are problems…

Improve trust, education, tools,
methodologies, research

Human factors, Architecture-Centric
philosophy not always embraced

Better model
representation/analysis techniques.
Aspects

Architectural Evolution,
Cross-cutting concern analysis, etc

Multi-level modeling techniquesDynamic Assessment

Augmentation, auto-generation, re-
parameterization

Behavioral
incompleteness

Early discovery, Static analysisInconsistency

UML profile, improved architectural
semantics

UML Usages

Solution ApproachesProblem Areas

Ignoring these does not reduce architectural risk

UCI Research Forum

Different UML Usages

xXHigh-level sequence diagrams
High-level state/activity diagrams
Class/actor as subsystems
Role relationships between components

Conceptual system-level
models (goals, objectives,
system dependencies,
constraints)

XxClass diagrams as SW classes
Detailed sequence diagrams
(messages/methods, class
participants)
State behavior (class, method)
Deployment info

Architectural/detailed
design Level
(active/passive objects
interfaces, tasks, OS
models, concurrency,)

xXUse case/functional requirement
descriptions (nominal, alternative,
exception, preconditions,
postconditions, triggers)

Requirements analysis
and traceability (reqt
ids, subsystem, build,
test info)

PSMPIMUML ArtifactsFocus

UCI Research Forum

REACT Example:
Class Coverage in Sequence Diagrams

41%

59%

Classes referenced in
some sequence
diagram

Classes referenced in
no sequence diagram

UCI Research Forum

Usage of Class Diagrams

49% 35%

4%1% 3%

2%

4%
0%0% 2%

Unnamed Classes in
sequence diagram

Null Classes in sequence
diagram

Data structure Classes in
sequence diagram

Actor Classes in sequence
diagram

Other Classes in sequence
diagram

Unnamed Classes in no
sequence diagram

Null Classes in no sequence
diagram

Data structure Classes in no
sequence diagram

Actor Classes in no
sequence diagram

Other Classes in no
sequence diagram

UCI Research Forum

REACT Early Discovery Example:
Consistency and Completeness

Non-
standard

UML usage

Inconsistent
Classes,methods Traceability

incomplete

Less than
50%

methods
described

UCI Research Forum

Dynamic Assessment

n Goal: Perform dynamic assessment when
model behavioral information is missing

n Approach:
n Multiple levels of modeling abstraction
n Augmentation aspects
n Monitoring aspects

UCI Research Forum

Architectural Evolution

n Representations must support frequent change
(mandatory/optional components)

n Not all features will be preplanned and separable
n Need to look backward, forward, and elsewhere! (e.g. old design

decisions, new usage scenarios, other ICDs, changing
requirements)

n Expand features to study concerns we don’t want! (e.g. design
conflicts, deadlocks, unreachable states)

n Architectural complexities/dependencies will make feature
interactions difficult to manage

n Separation/integration of multiple UML models
n Any given OO decomposition will eventually be reexamined
n There are cross cutting concerns that the programming domain

alone cannot answer (e.g. version impacts, requirements
evolution changes, workload)

UCI Research Forum

Evolving REACT

n Improve Architectural Representation
n Improve Assessment Techniques

UCI Research Forum

Expanding Architectural Representations

Aspects

Requirement
Representation

Architecture
Representation

Environment
Representation

Workload
Representation

 Aux Reports

UML
Model Model

Generator

Model
Configuration

Dynamic
Assessment

Model Executor

Profile
Interpreter

Model
Generator

Aspects

UML
Profile

AspectsAspects

Reverse
Engineer

Code
Analyzer

xml
xml

Code

Artifacts

Aspect
Processor

Dynamic
Assessment

Results

Static
Assessment

Aspect
Processor

Aspect
Processor

Model
Configuration

Model
Configuration

Dynamic
Assessment

Results

Dynamic
Assessment

Results

Use cases

Prep
Tools

Prep
Tools

Use casesICDs
Deployment

Info

Prep
Tools

Use cases

Artifacts

Model
Generator

Extractor
Extractor

UCI Research Forum

Expanding Assessment Techniques

n Develop tools/techniques to improve context and semantics
n XML schemas represent/share architectural artifacts
n Support augmentation from various sources
n Support interpretation aspects (e.g. UML profiles of use)

n Augment representations with parameters derived from reverse-
engineered code
n Capture missing behaviors to improve evolution success

n Manage planned scenarios as analyzable use cases
n Manage planned features as aspects over entire representation

space
n Dependencies too difficult otherwise

n Move toward automating analysis and aspect-oriented impact
analysis

n Develop architectural analysis techniques to discover design
patterns and refactoring opportunities

UCI Research Forum

Closing Comments

n The holy grail of architecture is not efficient software
code generation but managing architectural risk
during its evolution

n A systems engineering perspective supporting
architectural assessments and impacts to change is
desired

n Architecture is a core asset that goes beyond UML
and AOP.

n Architectural representation challenges remain
n UCI is a meeting the challenge!

UCI Research Forum

Backup Charts

UCI Research Forum

References

n Scenario-based
n R. Kazman, G. Abowd, L. Bass, P. Clements, “ Scenario-Based Analysis of

Software Architecture,” IEEE Software, 13 (6):47-56, 1996
n R. Kazman, M. Klein, M Barbacci, T. Longstaff, H Lipson, J. Carriere, “The

Architecture Tradeoff Analysis Method,” in Proceedings of the 4th

International Conference on Engineering of Complex Computer Systems
(ICECCS98), Monterey, CA, IEEE CS Press, pp68-78, 1998

n P. Bengtsson, N. Lassing, J. Bosch, H. vanVliet, “Analyzing Software
Architectures for Modifiability,” May 2000

n Feature-oriented
n M. Svahnberg, J. Van Gurp, J. Bosch, “On the Notion of Variability in

Software Product Lines” Proceedings of the Working IEEE/IFIP Conference
on Software Architecture (WICSA 2001), pp 45-55, August 2001

n Architecture-centric Design
n T. Mens, C. Lucas, P. Steyaert, “Supporting Disciplined Reuse and

Evolution of UML Models,” First International Workshop on UML,
Mulhouse, France, June 1998

n Xadl, an XML architecture description language
http://www.isr.uci.edu/projects/xarchuci/

UCI Research Forum

References (cont’d)

n Aspect-oriented Programming
n See Communications of ACM, October 2001, Vol 44, No 10.

n Aspect-oriented Architectural Analysis
n P. Schmidt, R. Duvall, G. Mulert, J. Milstein, J. Rivera, “Aspect-Oriented

Architectural Analysis using Multi-level Modeling of Complex Systems,”
Proceeding of 2003 International Information Resources Management
Conference, May 2003

n Maintenance/Product Line Studies
n J.Bosch “Product-Line Architectures in Industry,” Proceeding of the 21st

International Conference on Software Engineering, Nov 1998
n J. van Grup, J. Bosch, “Design Erosion: Problems and Causes,” Journal of

Systems and Software, November 2001.
n M. Lindvall, K. Sandahl, “How well do Experienced Software Developers

Predict Software Change?”, Journal of Systems and Software, vol 43, no 1, pp
19-27, 1998

n M. Lindvall, M. Runesson, “The Visibility of Maintenance in Object Models: An
Empirical Study,” Proceedings of International Conference on Software
Maintenance, Los Alamitos, IEEE CS Press, pp 54-62, 1998

n B. Lientz, E Swanson, Software Maintenance Management, Reading, MA,
Addison-Wesley, 1980.

UCI Research Forum

Definitions

n Architectural variability, refers to the ability to
identify and flexibly reshape aspects of an
architecture
n Aspects identify points of variation

n Program evolution refers to the ability of an
architecture, over its lifecycle, to undergo
change

UCI Research Forum

Augmentation Aspects

n Example: Initially model missing information
as a “black box”
n An aspect identifies

n Area/context of interest (e.g. methods with no state
behavior)

n Some action to be taken (associate some default black
box action state with that method)

n Later another aspect could replace/revise the
black box behavior

n Example: Identify all COTS tool interfaces

UCI Research Forum

Monitoring Aspects

n Monitor defines an action to take and the
condition under which to enable it.

n Currently monitoring is independent of
system under study. E.g. monitoring does not
force adaptive behavior

n Augmentation aspects can tag areas and
enable monitoring. E.g. All interrupt handler
methods.

n Monitoring can provide directives to the
simulator (e.g. report Task msg queue size)

UCI Research Forum

Multi-Level Modeling Types

n Method-level Modeling
n Participant-level Modeling
n Use-case level Modeling

