
1

Event-based systems and Software Architectures:
Out of the Shadows and into the Mainstream

� Panelist: Nicolas Rouquette, NASA JPL
� Context: The Mission Data System project (MDS)
� Relation:

� MDS uses two architecture styles
� State Analysis (invented at JPL)
� Component/Connector style based on xADL2.0

2

Timing @ JPL

� Internal factors
� State analysis fundamentally involves

events (e.g., state change notification)
� In our xADL runtime, function calls can be

reified into objects that can be operated
on (I.e., enabling factor)

� External factors
� JPL-Sun collaboration on Real-Time Java
� RTSJ specification involves several events

3

Applicability @ JPL
� Thread scheduling (a la RTSJ)

� Scheduler posts “miss” and “overrun” events (RTSJ)
� Thread state changes are event sources (MDS)

� Mission Planning & Scheduling (MDS)
� How should the system react to events when it is involved

in other competing activities?
� Low-level controllers & estimators must be instrumented

to send events
� Verification & Validation (w/ NASA Ames)

� Decouple verification & checking using instrumentation
� Livelock, deadlock are two sample problems solvable with

logs of lock/unlock events.

4

Scalability: Performance matters but
architecture knowledge is key

� The performance syndrome
� Events everywhere…
� …progress nowhere!

� Strategy:
� Optimize event communication

✦ Requires knowledge of the architecture
� Global vs. local knowledge => closed vs. open world

✦ At runtime
� E.g., during architecture prescription
� E.g., during software reconfiguration

✦ At design time
� E.g., state machine code generation
� E.g., model-based software transformation

5

Training

� Traditional “flight software” at JPL
� A bit of magic, a lot of wisdom
� A lot of experience & attention to detail
� A lot of confidence, creativity and testing
� => Very difficult to teach how to do it

� MDS approach: Architecture hoisting
� Focus on the two architectures

✦ State analysis (states, controllers, estimators, sensors,…)
✦ Software architecture (components, connectors, …)

� Code is synthesized from the architecture
✦ With the right QoS properties built-in

� Need: architecture transformation culture
✦ Traditional code generators make homomorphic transformations

6

Technology: Transforming
Architectures into Code

� Taxonomy of connectors
� Many dimensions & attributes => many implementations

� Architecture-based transformation
� Quality of Service properties may be:

✦ Enforced by design (no runtime overhead)
✦ Actively monitored (needs reification)

� Transform the architecture into the software that is
engineered to make the selected trades

� Paradigm shift from
✦ software-centric

� people writing lots & lots of code
✦ architecture-centric engineering

� people writing architectures & transforming them into code

