lSR University of California
Institute for Software Research

Event-based systems and Software Architectures:
Out of the Shadows and into the Mainstream

Panelist: Nicolas Rouquette, NASA JPL
Context: The Mission Data System project (MDS)
Relation:
MDS uses two architecture styles
State Analysis (invented at JPL)
Component/Connector style based on xADL2.0

1



Timing @ JPL

Internal factors

State analysis fundamentally involves
events (e.g., state change notification)

In our xADL runtime, function calls can be
reified into objects that can be operated
on (I.e., enabling factor)

External factors
JPL-Sun collaboration on Real-Time Java
RTSJ specification involves several events



Applicability @ JPL

Thread scheduling (a la RTSJ)

Scheduler posts "miss” and "overrun” events (RTSJ)
Thread state changes are event sources (MDS)

Mission Planning & Scheduling (MDS)

How should the system react to events when it is involved
in other competing activities?

Low-level controllers & estimators must be instrumented
to send events

Verification & Validation (w/ NASA Ames)

Decouple verification & checking using instrumentation

Livelock, deadlock are two sample problems solvable with

logs of lock/unlock events.
3



Scalability: Performance matters but
architecture knowledge is key

The performance syndrome
Events everywhere...
..progress nowherel

Strategy:

Optimize event communication

Requires knowledge of the architecture
Global vs. local knowledge => closed vs. open world
At runtime
E.g., during architecture prescription
E.g., during software reconfiguration
At design time

E.g., state machine code generation
E.g., model-based software transformation



Training

Traditional "flight software” at JPL
A bit of magic, alot of wisdom
A lot of experience & attention to detail
A lot of confidence, creativity and testing

=> Very difficult to teach how to do it

MDS approach: Architecture hoisting

Focus on the two architectures
State analysis (states, controllers, estimators, sensors,...)
Software architecture (components, connectors, ...)

Code is synthesized from the architecture
With the right QoS properties built-in
Need: architecture transformation culture
Traditional code generators make homomorphic transformationss



Technology: Transforming
Architectures into Code

Taxonomy of connectors
Many dimensions & attributes => many implementations

Architecture-based transformation

Quality of Service properties may be:
Enforced by design (no runtime overhead)
Actively monitored (needs reification)
Transform the architecture into the software that is
engineered to make the selected trades
Paradigm shift from
software-centric
people writing lots & lots of code
architecture-centric engineering
people writing architectures & transforming them into code 6



