A Field Study of Collaborative Software Development Teams (Initial Results)

Cleidson de Souza1,2

John Penix2

Maarten Sierhuis2

1UC, Irvine Graduate Student and NASA/Ames Summer Intern

2NASA/Ames Research Center
Overview

- The Setting: CTAS
- Methodology
- Initial Findings
- Future Work
- Conclusions
The Setting:
Center TRACON Automation System (CTAS).

- A suite of automation tools developed at NASA/Ames designed to help air traffic controllers to manage air traffic flow at large airports.

- In 1991 it was chosen by the FAA as the future automation system for the terminal area.

- Since then it has been used in 6 different airports.
The Setting:
Center TRACON Automation System (CTAS).

- CTAS is composed of 10 different tools.
- Source code:
 - C and C++. GUI’s are being ported to Java.
 - 1,000,000 LOC.
- Development Team:
 - Number of developers: 31.
 - Two groups: V &V and Developers.
 - Work in processes, instead of tools
Methodology

- **Field Study**
 - Five weeks in the field until now, four more weeks to go.

- **Data Collection**
 - Participant Observation
 - “Shadowing” developers with different roles.
 - Interview Techniques
 - 4 interviews until now ranging from 45 to 120 minutes.

- **Data Collected**
 - Several artifacts collected
 - What developers do, how, when, where they do, and most importantly WHY they do it.
Initial Results

- Most important tools:
 - configuration management; and
 - bug tracking system.
- These tools provide shared repositories for source code and change requests.
- The CM and the bug tracking tool provide automation of some tasks like:
 - Version control, identification of releases, report generation, and so on.
Initial Results

- Developers adopt conventions to use these tools so that they users might cooperate effectively.

- Examples:
 - Naming conventions for creating branches and views to work with the CM tool;
 - Priorities and severities of the bugs in the bug tracking tool.
Initial Results

- However, the conventions adopted by the developers are not automated.
- Examples:
 - Previous naming convention;
 - E-mail sent by developers right before the check-in.
Initial Results

- Important communication using e-mail:
 - Is it the most effective tool to provide notifications?
 - On the other hand, e-mail is also used as a learning tool by new developers, so that they can be aware who is responsible for what process. This information is later used when one has to fix a bug in that process.
Short Summary of Results

- Coordination using CM and bug tracking
- Use of Conventions
- Communication using E-mail
 - Problematic in some cases; but
 - Provides awareness of others work.
- Intense Parallel Development
Future Work

- Data Collection for 3 more weeks.
- Analysis of the data
 - Grounded Theory
 - Brahms multi-agent model
- Ultimate goal:
 - Identify requirements for technology support for this group.
 - If necessary, develop this technology.
Conclusions

- **CTAS:**
 - Successful project developed at NASA/Ames.

- **Methods**

- **Initial results**
 - Important tools used by the developers; and
 - Problems with these tools

- **Future Work**