
IVA: Visualizing Software Instability

Jennifer Bevan

University of California, Santa Cruz

Jbevan@soe.ucsc.edu

Problem: Software Decay

• Software decays as a result of incompatibilites
between the operating environment and the
implemented artifact.
– Failure to meet requirements, specify accurate

requirements, or anticipate changes in requirements.

• The existing software architecture can hinder the
effectiveness of the maintenance process.
– “golden handcuffs”, intransigent code.

Hypothesis and Proposal

• Hypothesis: an analysis of historical modification
data can identify and classify problematic, high-
maintenance software regions.
– These regions can be described as “instabilities”.

– Such knowledge can direct software redesign efforts.

• Proposal: IVA, a tool to visualize and analyze
software instabilities.
– The visualization can direct focused analysis.

Related Research

• Static software analysis…
– Uses dependence graphs of a single revision to

generate code metrics (cohesion, coupling,
complexity) or conduct change impact analyses.

• Software evolution either…
– Analyzes software modification data to create

process-level metrics and models of evolution.

– Attempts to automatically evolve software.

IVA Is Different Because…

• IVA distinguishes between dependence-related
changes and changes made during the same
“commit”.

• IVA does not require advanced change
management data for basic functionality
– Only requires when, where, what, but not why.

• User controls IVA filtering and aggregating of
change data.
– Different users are interested in different things.

IVA Architecture

Preprocessor Daemon
 -Dependence Graph
Generation
 - Raw Metric Calculation

Instability Analyzer
- Normalization & Filtering
- Instability Identification
- Metric Calculation
- Instability Prioritization

Visualization
Engine

Report
Generator

SCM
repository

IVA
repository

Instability Visualization (1 of 3)

• Dependence graph
nodes positioned using
heirarchical relationship.

• Causes spatial clustering
of related nodes:
– Package, class, method

– Directory, file, function

Instability Visualization (2 of 3)

• Surface map generated
from dependence graph
layout.

• Retains global context of
data (code location, etc.)

• Hides edges, reduces
clutter.

Instability Visualization (3 of 3)

• Classified instability
regions are overlaid on
the surface map.

• Instabilities follow edges
of underlying dependence
graph.

• Color and width denote
user-controllable metrics;
distance denotes span of
coupling.

Use In Collaborative Development

• IVA can analyze and provide feedback on a
given implementation of collaborative
development.
– Does task breakdown force contention?

• Coloration based on number of different committers.

– Does system architecture force contention?
• High severity and number of different committers.

– User can control visualization by directing color, line
width, or aggregation algorithms.

Conclusion

• IVA will leverage the data stored in change
control systems (CVS as a minimum) by
identifying and classifying historical change
patterns.

• A proof-of-concept IVA is under construction
– Will handle Java source code in Subversion

repository.
– Will provide additional visualizations for in-depth

exploration of specific instability regions.

Questions?

• The work completed to date was funded by a
2001 USENIX Student Research Grant.

• See http://www.cse.ucsc.edu/~jbevan for IVA
progress and status updates.

• Email jbevan@cse.ucsc.edu with future
questions.

