IVA: Visualizing Software Instability

Jennifer Bevan
University of California, Santa Cruz
Jbevan@soe.ucsc.edu
Problem: Software Decay

- Software decays as a result of incompatibilities between the operating environment and the implemented artifact.
 - Failure to meet requirements, specify accurate requirements, or anticipate changes in requirements.
- The existing software architecture can hinder the effectiveness of the maintenance process.
 - “golden handcuffs”, intransigent code.
Hypothesis and Proposal

• Hypothesis: an analysis of historical modification data can identify and classify problematic, high-maintenance software regions.
 – These regions can be described as “instabilities”.
 – Such knowledge can direct software redesign efforts.

• Proposal: IVA, a tool to visualize and analyze software instabilities.
 – The visualization can direct focused analysis.
Related Research

- **Static software analysis**…
 - Uses dependence graphs of a single revision to generate code metrics (cohesion, coupling, complexity) or conduct change impact analyses.

- **Software evolution** either…
 - Analyzes software modification data to create process-level metrics and models of evolution.
 - Attempts to automatically evolve software.
• IVA distinguishes between dependence-related changes and changes made during the same “commit”.
• IVA does not require advanced change management data for basic functionality
 – Only requires when, where, what, but not why.
• User controls IVA filtering and aggregating of change data.
 – Different users are interested in different things.
IVA Architecture

- Preprocessor Daemon
 - Dependence Graph Generation
 - Raw Metric Calculation

- Instability Analyzer
 - Normalization & Filtering
 - Instability Identification
 - Metric Calculation
 - Instability Prioritization

- Visualization Engine

- Report Generator

SCM repository
IVA repository
Instability Visualization (1 of 3)

- Dependence graph nodes positioned using hierarchical relationship.
- Causes spatial clustering of related nodes:
 - Package, class, method
 - Directory, file, function
Instability Visualization (2 of 3)

- Surface map generated from dependence graph layout.
- Retains global context of data (code location, etc.)
- Hides edges, reduces clutter.
• Classified instability regions are overlaid on the surface map.
• Instabilities follow edges of underlying dependence graph.
• Color and width denote user-controllable metrics; distance denotes span of coupling.
Use In Collaborative Development

- IVA can analyze and provide feedback on a given implementation of collaborative development.
 - Does task breakdown force contention?
 * Coloration based on number of different committers.
 - Does system architecture force contention?
 * High severity and number of different committers.
 - User can control visualization by directing color, line width, or aggregation algorithms.
• IVA will leverage the data stored in change control systems (CVS as a minimum) by identifying and classifying historical change patterns.
• A proof-of-concept IVA is under construction
 – Will handle Java source code in Subversion repository.
 – Will provide additional visualizations for in-depth exploration of specific instability regions.
• The work completed to date was funded by a 2001 USENIX Student Research Grant.
• See http://www.cse.ucsc.edu/~jbevan for IVA progress and status updates.
• Email jbevan@cse.ucsc.edu with future questions.