
High Performance Software Architectures:
A Connector-Oriented Approach

David Woollard
University of Southern California
Department of Computer Science

Los Angeles, CA 90089-0781

woollard@usc.edu

Nenad Medvidovic
University of Southern California
Department of Computer Science

Los Angeles, CA 90089-0781

neno@usc.edu

ABSTRACT
Scientists in multiple domains have begun conducting in-
vestigations using a new paradigm centered on computer
simulation as means of experimentation and theory valida-
tion. Unfortunately, our ability to program simulations that
are equal to the task of truly new science is handicapped by
our lack of support for high performance computing abstrac-
tions. In this position paper, we explore the potential role of
software architectures as a means of encapsulating many of
the services required for parallel programming into explicit
first-class software connectors.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

Keywords
domain specific software architectures, high performance com-
puting, high performance connectors

1. INTRODUCTION
A growing number of physicists, biologists, chemists, and

computer scientists in multiple physical domains have em-
braced a new scientific process that emphasizes simulation
as a fundamental method not only in the evaluation of the-
ory but also in the formulation of new science. This shift has
been made possible in recent years as the cost-to-performance
ratio of consumer hardware has continued to decrease. Com-
putational clusters consisting of fast networks and commod-
ity hardware have become a common sight in research lab-
oratories.

While parallel hardware has become commonplace, our
ability to build software capable of matching the theoret-
ical limits of today’s supercomputers has fallen short [11].
Our understanding of parallel programming including the
abstractions available to scientists with deep domain knowl-
edge but little computer science experience are significantly
lacking.

In the past forty years, we have seen the emergence and
obsolescence of a superabundance of parallel languages, li-
braries, and compilers, each promising to be a silver bul-
let for the parallel programming practitioner. Potentially
panacean domain specific parallel languages such as Sisal
[1] have offered serviceable development of parallel scientific

applications, but have never gained wide acceptance pos-
sibly due to the difficulty in adopting new languages (the
death rate of languages has been estimated at well over 99%
[15]1).

Today, scientific programmers have eschewed domain spe-
cific parallel languages in favor of parallel libraries for es-
tablished sequential programming languages such as C and
Fortran. OpenMP’s pragmas [2] and the Message Passing
Interface’s (MPI) library calls [4] are two examples of par-
allel libraries in wide use today. Because of interface bloat
[5] and the resulting code obfuscation inherent in repetitive
library calls, current efforts such as DARPA’s High Produc-
tivity Computer Systems Initiative are revisiting language-
level support for parallel computing.

A largely unexplored alternative to language-level sup-
port for parallel computing is to support the concepts of
concurrency, synchronization, and topological ordering in a
domain specific software architecture [14, 10, 16]. The dis-
cipline of software architectures is a powerful abstraction
primarily concerned with the composition of software sys-
tems from constituent elements such as computational units
(components), the communications facilities between these
components (connectors), and the organization of these ele-
ments in topologies (configurations).

Software architectures do not require investment in new
languages by the developer and so avoid the non-acceptance
problem of previous domain-specific parallel languages. Be-
cause software architectures are high-level abstractions that
provide the developer with a concise model of software sys-
tems, they do not require the overlay of parallelism in the
form of library calls. Rather than support explicit communi-
cations interwoven with computational code, a well-formed
software architectural solution could support high perfor-
mance communications via first-class explicit connectors.

In the rest of this paper, we will first explore the pertinent
aspects of high-performance scientific applications including
structure and typical memory access patterns. We will then
discuss the role of connectors in this domain, considering
both the evolution of communications in parallel computa-
tion and modern examples of high-performance connectors.
Finally, we will discuss the services which a high perfor-
mance connector must provide in order to support parallel
programming at a high level.

1In an American Mathematical Association prospectus pub-
lished in July 1965, it was claimed that over 1,700 special
programming languages had already been developed [8]. To-
day, very little is know about the vast majority of these
languages.



2. SCIENTIFIC APPLICATION DOMAIN
Scientific applications are generally defined as computer

programs that attempt to model physical phenomena, giv-
ing rise to a scientific investigation in which empirical ob-
servation, mathematical models, computer algorithms and
simulation results are used to cyclically establish and verify
human understanding.

The structure of these programs is directly influenced by
the application of a transformational algorithm to an n-di-
mensional set of data in a series of discrete time-steps. This
structure usually consists of a central control loop governing
time-steps and a nest of loops controlling data access (usu-
ally of the same dimension as the data). Algorithms can be
data access dependent or independent, though they tend to
be time-step dependent.

An example of the process of modeling physical phenom-
ena in a scientific application is molecular dynamics simula-
tion [12]. Classical Newtonian physics gives us the following
equations for the velocity and acceleration of molecule i at
time t given its trajectory, −→ri , in space:

t ∈ R 7→ −→ri (t) ∈ R3

−→vi (t) =
d−→r
dt

−→ai (t) =
d−→v
dt

=
d2−→r
dt2

(1)

These equations, along with models for the potential en-
ergy of molecules such as Lennard-Jones [12] give a math-
ematical basis for the observable phenomena of molecules
interacting in three dimensions. A common discretization
of these equations which can yield a computable algorithm
is the velocity-Verlet algorithm [12] (discretization to time-
steps introduces a ∆ into the algorithm). When these equa-
tions are formulated as a computer algorithm, the common
structure of scientific programs emerges. If we assume an ar-
ray for storage of both molecule position and velocity, there
are multiple un-nested data access loops which can be seen
in Figure 1.

Initialize (−→ri ,
−→vi ) for all i

Compute −→ai as a function of {−→ri (t)}
for stepCount:1→ n ← control loop
−→vi ← −→vi +−→ai∆/2 for all i data 	
−→ri ← −→ri +−→vi ∆ for all i data 	
Compute −→ai as a function of {−→ri } for all i data 	
−→vi ← −→vi +−→ai∆/2 for all i data 	

endfor

Figure 1: Pseudocode example of the velocity-Verlet
implementation of a molecular dynamics simulation
illustrating the central control loop with multiple
data access loops.

Though this pseudocode does not seem challenging to im-
plement in an executable form, useful science requires the
execution of this algorithm on datasets that challenge the
performance of today’s computers. Simulating a one mo-
lar concentration of molecules would require storage of over
5.4 × 1024 floating point numbers and more time than the
age of the universe given an execution speed of one million
instructions per second.

Though molecular science discoveries have shown that
simulation of this large a number of molecules in not needed

to accurately simulate physical phenomena, realistic simu-
lations running in reasonable execution times still require
parallel supercomputers, leading the developer not only to
program the psuedocode in Figure 1, but to also consider
parallel data access, local caching (assuming a distributed
memory machine), communications of boundary conditions,
and a host of other issues specific to a parallel version of this
simulation. In the next section, we will explore how these
issues can be addressed in a high performance software ar-
chitecture, specifically focusing on the services which should
be provided by this architecture’s connectors.

3. DEVELOPING AN ARCHITECTURE
Based on the regular structure of scientific programs, we

can easily establish the means of utilizing component-based
software development for high performance scientific appli-
cations. Because a transformational algorithm is applied at
multiple timesteps, there is usually a dependence between
control loop executions, but internal data access loops can
often be encapsulated in a component wrapper and repli-
cated in order to elicit parallelism in the resulting software
system [17].

While connector elements are typically described as the lo-
cus of communications, holding a secondary position to com-
ponents in traditional software architectural development,
they are much more than system service wrappers in high
performance computing. In [9], Mehta, et. al. showed that
a connector can have an arbitrarily rich internal structure
supporting advanced services such as caching and priority-
based delivery. In order to establish the connector “services”
which should be provided for high-performance scientific ap-
plication architectures, it is first important that we analyze
communications support in concurrent programming.

3.1 The Evolution of the Connector
Since the advent of modern computers, developers have

used concurrent programming to build everything from real-
time controllers to time-sharing systems. When computer
scientists first systematically explored the notion of concur-
rent program execution, researchers such as Dijkstra quickly
established the need for synchronization of shared variables
[3]. Shared variables with protected access via synchroniza-
tion primitives like locks and semiphores were the first form
of communications between concurrent processes.

An evolution of synchronization technology came with the
concept of monitors [6, 7]. Rather than rely on a collection
of primitives for safe communication, monitors handle ac-
cess of shared data by allowing only one concurrent process
to execute a monitor’s methods at any given time, guaran-
teeing deterministic access to shared data (see Figure 2).
In many ways, monitors are implicit software connectors al-
lowing concurrently-executing components to communicate
via shared memory. Much like software buses or blackboard
systems, monitors allow for component interaction free from
race conditions and other low-level memory management is-
sues.

An interesting modern evolution of the high performance
connector is transactional memory systems [13]. With trans-
actional memory, the monitor concept is refined to a single
commit method which allows for non-blocking (i.e., specu-
lative) execution. In the next section, we will explore other
services in addition to communications and synchronization
a high performance connector could ideally support.



Update 

Position

Update 

Position

Update 

Position

S
h

a
re

d
 M

e
m

o
ry

A
d

d
re

ss
 S

p
a

ce

Monitor (System Level Resource)

Method 

Invocation

Method 

Invocation

Method 

Invocation

co
m

pute
s f

or 

m
ole

cu
le

s

Figure 2: Multiple components calculate the trajec-
tories of molecules in a segmented 3-D space using
monitors for communications.

3.2 Connector Services
The evolution of the software connector suggests that within

the domain of high-performance computing, connectors are
the paramount architectural elements, subsuming compo-
nents as the focal point for software engineering-oriented
development support. This begs the question: what are the
services which high performance connectors must provide?
We have identified three key services:

• Communications – Efficient point-to-point commu-
nication is predominant in all software connectors, in-
cluding high-performance connectors. Underlying de-
livery issues such as reliability and network topology
should be obscured as much as possible from the de-
veloper.

• Separation of Concerns – Just as the component
provides a wrapper around the transformational algo-
rithms at the heart of scientific computing, connectors
should encapsulate all communication.

• Synchronization – High performance connectors should
guarantee safe access to data, arbitrating between com-
ponents in such a way as to provide deterministic per-
formance.

4. CONCLUSION
In this paper, we have explored the ability of software ar-

chitectures to provide an abstraction for parallel program-
ming paradigms often encapsulated in either domain-specific
languages or parallel library routines. Unlike domain-specific
languages, software architectures do not require investment
in new languages by the developer, reducing the risk of non-
acceptance. Additionally, because it is a high-level abstrac-
tion, software architecture does not cause undue code obfus-
cation but rather provide the developer with a more concise
model with which to aid development.

The evolution of parallel programming paradigms from
simple synchronization primitives to implicit connectors like
monitors and transaction commits suggest that explicit high-
performance connectors are a logical progression of existing
parallel constructs. We have begun the study of complex
connectors suitable for this problem domain.

5. REFERENCES
[1] D. Cann. Retire fortran?: a debate rekindled.

Commun. ACM, 35(8):81–89, 1992.

[2] R. Chandra, R. Menon, L. Dagum, D. Kohr,
D. Maydan, and J. McDonald. Parallel Programming
in OpenMP. Morgan Kaufmann, 2000.

[3] E. W. Dijkstra. Cooperating sequential processes.
Technological University, Eindhoven, The
Netherlands, 1965.

[4] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
Portable Programming with the Message Passing
Interface. MIT Press, 1999.

[5] S. Z. Guyer and C. Lin. Broadway: A software
architecture for scientific computing. In Proceedings of
the IFIP TC2/WG2.5 Working Conference on the
Architecture of Scientific Software, pages 175–192,
Deventer, The Netherlands, The Netherlands, 2001.
Kluwer, B.V.

[6] P. B. Hanson. Operating System Principles, chapter
Class Concept, pages 226–232. Prentice Hall,
Englewood Cliffs, NJ, 1973.

[7] C. A. R. Hoare. Monitors: an operating system
structuring concept. Commun. ACM, 17(10):549–557,
1974.

[8] P. J. Landin. The next 700 programming languages.
Commun. ACM, 9(3):157–166, 1966.

[9] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards
a taxonomy of software connectors. In ICSE ’00:
Proceedings of the 22nd international conference on
Software engineering, pages 178–187, New York, NY,
USA, 2000. ACM Press.

[10] D. E. Perry and A. L. Wolf. Foundations for the study
of software architectures. ACM SIGSOFT Software
Engineering Notes, October, 1992.

[11] D. E. Post and L. G.Votta. Computational science
demands a new paradigm. Physics Today, 58(1):35–41,
2005.

[12] D. Rapaport. The Art of Molecular Dynamics
Simulation. Cambridge U. Press, Cambridge, UK,
1995.

[13] N. Shavit and D. Touitou. Software transactional
memory. In Proceedings of the 14th ACM Symposium
on Principles of Distributed Computing, pages
204–213. Aug 1995.

[14] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice-Hall,
1996.

[15] B. Stroustrup. The pivot - a brief overview.
Presentation. Workshop on Patterns in High
Performance Computing. Urbana-Champaign, Illinois,
May 2005.

[16] W. Tracz. Dssa (domain-specific software architecture)
pedagogical example. ACM SIGSOFT Software
Engineering Notes, July, 1995.

[17] D. Woollard, N. Medvidovic, W. Yamada, and
T. Berger. Software engineering for neural dynamics:
A case study. In Proceedings of the First International
Workshop on Software Engineering for High
Performance Computing System Applications,
Edinburgh, Scotland, May 2004.


