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Overview
• Focused on free/open source software development 

practices and communities
– Free (GPL) is always open, but open is not always free.
– Empirical studies (qualitative, ethnographic, process-centered)

• Practices for requirements, configuration, evolution, 
project management, technology transfer and licensing. 

• Examples drawn from the F/OSS Computer Game 
community
– Fourth largest community of F/OSS projects on 

SourceForge.net (>8K projects).
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F/OSS Processes for Software 
Requirements or Design

• F/OSS Requirements/Designs 
– not explicit (no declared reqs/design artifacts)
– not formal (no notation-based artifacts)

• F/OSS Requirements/Designs are embedded 
within “informalisms”
– Example OSS informalisms to follow (as 

screenshot displays of online artifacts)
• F/OSS Requirements/Design processes are 

different from their SE counterparts.
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SE vs. F/OSS processes for 
Requirements

• Elicitation
• Analysis 

• Specification and 
modeling

• Validation

• Communicating and 
managing

• Post-hoc assertion
• Reading, sense-making, 

accountability
• Continually emerging 

webs of discourse
• Condensing and 

hardening discourse
• Global access to online 

discourse
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Retrospective
requirements
specification 

example
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Configuration management and 
work coordination

• Use CM to coordinate and control who gets to 
update what part of the system
– Many F/OSSD projects use CVS (single centralized 

code repository with update locks) and frequent 
releases (daily releases on active projects)

– Linux Kernel: BitKeeper (multiple parallel builds and 
release repositories)

– Collab.Net and Tigris.org: Subversion (CVS++)
– Apache: Single major release, with frequent “patch” 

releases (e.g., “A patchy server”)
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Concurrent
version 

system (CVS) 
for coordinating

source code
updates
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Evolutionary redevelopment, 
reinvention, and revitalization

• Overall evolutionary dynamic of F/OSSD is 
reinvention
– Reinvention enables continuous improvement

• F/OSS evolve through minor mutations
– Expressed, recombined, redistributed via incremental releases

• F/OSS systems co-evolve with their development 
community
– Success of one depends on the success of the other

• Closed legacy systems may be revitalized via 
opening and redistribution of their source
– When enthusiastic user-developers want their cultural 

experience with such systems to be maintained.
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Revitalizing
legacy

applications
via 

open 
source

example
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Project management and career 
development

• F/OSSD projects self-organize as a layered 
meritocracy via virtual project management
– Meritocracies embrace incremental mutations over 

radical innovations
– VPM requires people to act in leadership roles based 

on skill, availability, and belief in project community

• F/OSS developers want to have fun, exercise 
their technical skill, try out new kinds of systems 
to develop, and/or interconnect multiple F/OSSD 
projects (freedom of choice and expression).
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(images from A.J. Kim, Community Building on the Web, 2000)

A layered meritocracy and role 
hierarchy for F/OSSD
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Virtual 
project

management
example
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Example
of 

F/OSS development
patterns that

encourage having
fun and getting

a new job
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Software technology transfer and 
licensing

• F/OSS technology transfer from existing 
Web sites is a community and team 
building process
– Not (yet) an engineering process
– Enables unanticipated applications and uses
– Enables F/OSSD to persist without centrally 

planned and managed corporate software 
development centers



15

Example 
of F/OSS

technology transfer
that enabled 

creation of new
kind of application
(e.g., online virtual

dancing)
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Free/OSS licenses

Reiterate and institutionalize F/OSS culture 
(values, norms, and beliefs), and thus act 
to sustain F/OSS communities
– GNU Public License (GPL) for free software
– More than 35 other open source licenses (

http://www.opensource.org)
– “Creative Commons” Project at Stanford Law 

School developing public license framework 
(see http://www.creativecommons.org)
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Implications

• F/OSSD is a community building process
– not just a technical development process
– F/OSS peer review creates a community of peers

• F/OSSD processes often iterate daily versus 
infrequent singular (milestone) Software Life 
Cycle Engineering events
– F/OSSD: frequent, rapid cycle time (easier to 

improve) vs.
– SLC: infrequent, slow cycle time (harder to improve)
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Game World StatsGame World Stats
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Conclusions

• Developing F/OSS is different than 
software engineering
– not better, not worse, but different and new
– more social, more accessible, more convivial, 

more community oriented. 
• F/OSS systems don’t need and probably 

won’t benefit from classic software 
engineering.
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ConclusionsConclusions
• Jointly conducting R&D in F/OSS computer Jointly conducting R&D in F/OSS computer 

game culture, technology, and communitygame culture, technology, and community
• Breaking down barriers between art, science, Breaking down barriers between art, science, 

technology, culture through F/OSS computer technology, culture through F/OSS computer 
games, game environments, and experiencesgames, game environments, and experiences

• Creating a new generation of informal            Creating a new generation of informal            
learning tools and techniques, together with a learning tools and techniques, together with a 
global community of developers and users.global community of developers and users.
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Open source
software research

Web site at
UCI
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