
1

Community Development and
Interaction in Open Source

Software Development Projects
and Beyond

Walt Scacchi
Institute for Software Research

and
Laboratory for Computer Game Culture and Technology

School of Information and Computer Science
University of California Irvine
Irvine, CA 92697-3425 USA

http://www.ics.uci.edu/~wscacchi

2

Overview
• Focused on free/open source software development

practices and communities
– Free (GPL) is always open, but open is not always free.
– Empirical studies (qualitative, ethnographic, process-centered)

• Practices for requirements, configuration, evolution,
project management, technology transfer and licensing.

• Examples drawn from the F/OSS Computer Game
community
– Fourth largest community of F/OSS projects on

SourceForge.net (>8K projects).

3

F/OSS Processes for Software
Requirements or Design

• F/OSS Requirements/Designs
– not explicit (no declared reqs/design artifacts)
– not formal (no notation-based artifacts)

• F/OSS Requirements/Designs are embedded
within “informalisms”
– Example OSS informalisms to follow (as

screenshot displays of online artifacts)
• F/OSS Requirements/Design processes are

different from their SE counterparts.

4

SE vs. F/OSS processes for
Requirements

• Elicitation
• Analysis

• Specification and
modeling

• Validation

• Communicating and
managing

• Post-hoc assertion
• Reading, sense-making,

accountability
• Continually emerging

webs of discourse
• Condensing and

hardening discourse
• Global access to online

discourse

5

Retrospective
requirements
specification

example

6

Configuration management and
work coordination

• Use CM to coordinate and control who gets to
update what part of the system
– Many F/OSSD projects use CVS (single centralized

code repository with update locks) and frequent
releases (daily releases on active projects)

– Linux Kernel: BitKeeper (multiple parallel builds and
release repositories)

– Collab.Net and Tigris.org: Subversion (CVS++)
– Apache: Single major release, with frequent “patch”

releases (e.g., “A patchy server”)

7

Concurrent
version

system (CVS)
for coordinating

source code
updates

8

Evolutionary redevelopment,
reinvention, and revitalization

• Overall evolutionary dynamic of F/OSSD is
reinvention
– Reinvention enables continuous improvement

• F/OSS evolve through minor mutations
– Expressed, recombined, redistributed via incremental releases

• F/OSS systems co-evolve with their development
community
– Success of one depends on the success of the other

• Closed legacy systems may be revitalized via
opening and redistribution of their source
– When enthusiastic user-developers want their cultural

experience with such systems to be maintained.

9

Revitalizing
legacy

applications
via

open
source

example

10

Project management and career
development

• F/OSSD projects self-organize as a layered
meritocracy via virtual project management
– Meritocracies embrace incremental mutations over

radical innovations
– VPM requires people to act in leadership roles based

on skill, availability, and belief in project community

• F/OSS developers want to have fun, exercise
their technical skill, try out new kinds of systems
to develop, and/or interconnect multiple F/OSSD
projects (freedom of choice and expression).

11
(images from A.J. Kim, Community Building on the Web, 2000)

A layered meritocracy and role
hierarchy for F/OSSD

12

Virtual
project

management
example

13

Example
of

F/OSS development
patterns that

encourage having
fun and getting

a new job

14

Software technology transfer and
licensing

• F/OSS technology transfer from existing
Web sites is a community and team
building process
– Not (yet) an engineering process
– Enables unanticipated applications and uses
– Enables F/OSSD to persist without centrally

planned and managed corporate software
development centers

15

Example
of F/OSS

technology transfer
that enabled

creation of new
kind of application
(e.g., online virtual

dancing)

16

Free/OSS licenses

Reiterate and institutionalize F/OSS culture
(values, norms, and beliefs), and thus act
to sustain F/OSS communities
– GNU Public License (GPL) for free software
– More than 35 other open source licenses (

http://www.opensource.org)
– “Creative Commons” Project at Stanford Law

School developing public license framework
(see http://www.creativecommons.org)

17

18

Implications

• F/OSSD is a community building process
– not just a technical development process
– F/OSS peer review creates a community of peers

• F/OSSD processes often iterate daily versus
infrequent singular (milestone) Software Life
Cycle Engineering events
– F/OSSD: frequent, rapid cycle time (easier to

improve) vs.
– SLC: infrequent, slow cycle time (harder to improve)

19

Game World StatsGame World Stats

20

Conclusions

• Developing F/OSS is different than
software engineering
– not better, not worse, but different and new
– more social, more accessible, more convivial,

more community oriented.
• F/OSS systems don’t need and probably

won’t benefit from classic software
engineering.

21

ConclusionsConclusions
• Jointly conducting R&D in F/OSS computer Jointly conducting R&D in F/OSS computer

game culture, technology, and communitygame culture, technology, and community
• Breaking down barriers between art, science, Breaking down barriers between art, science,

technology, culture through F/OSS computer technology, culture through F/OSS computer
games, game environments, and experiencesgames, game environments, and experiences

• Creating a new generation of informal Creating a new generation of informal
learning tools and techniques, together with a learning tools and techniques, together with a
global community of developers and users.global community of developers and users.

22

Open source
software research

Web site at
UCI

23

Acknowledgements

• Project collaborators:
– Mark Ackerman, University of Michigan, Ann Arbor
– Les Gasser, University of Illinois, Urbana-Champaign
– John Noll, Santa Clara University
– Margaret Ellliot, Chris Jensen, UCI-ISR
– Julia Watson, The Ohio State University

• Funding support:
– National Science Foundation, ITR#-0083075, ITR#-

#0205679, ITR#-0205724, and ITR#-#0350754.
– No endorsement implied.

24

References
see http://www.ics.uci.edu/~wscacchi

• W. Scacchi,
Understanding the Requirements for Developing Open Source Software,
IEE Proceedings--Software, 149(1), 24-39, 2002.

• W. Scacchi, Open EC/B
: A Case Study in Electronic Commerce and Open Source Software Development
, Final Report, July 2002.

• W. Scacchi,
Free/Open Source Software Development Practices in the Computer Game Community
, IEEE Software, Special Issue on Open Source Software, (to appear,
Jan-Feb. 2004).

• W. Scacchi,
Understanding Free/Open Source Software Evolution: Applying, Breaking and Rethinking the Laws of Software Evolution
, revised version to appear in N.H. Madhavji, M.M. Lehman, J.F. Ramil
and D. Perry (eds.), Software Evolution, John Wiley and Sons Inc, New
York, 2004.

