
Web browsing support for 
cross-community activities

Tomohiro Oda



Agenda

● cross-community activity

● cross-community activity and DynC

● difficulties in supporting cross-community 
activities

● cSuite: web browsing support tool for cross-
community activities

● cSuite for DynC



Cross-community activity

● Definition:

– Activity either

● needs support of multiple communities, or

● contributes to multiple communities.

● Examples:

– standard graph format

– developing OpenGL interface in Smalltalk for CAD 
system of a ship constructor.



Communities, individuals, activities, 
and interests

individual's interest
community's topic

topic
activity



Comparison with DynC

● Similarities

– Focused on each individual's tasks or activities

– not for community, but for individuals

● Differences

– supportive community v.s. supportive person

– assuming pre-existing communities
v.s. forming a new short-term community



Difficulties in supporting
cross-community activities

● A task needs knowledge of multiple communities.

– None of each community covers the whole task.

– It is hard to identify/describe the task from each 
community's viewpoint.

● It is difficult to recommend collaborators/related 
artifacts

– different motivations, interests, and goals on a same 
topic



Example difficulties: web browsing

● difficult to identify tasks
– Browsing a community's website does not mean the user is 

working on a task covered by the community.
e.g. A CAD programmer is reading the C-99 specification.
Does the C language community cover CAD programming?

● difficult to recommend collaborators/related 
artifacts
– Browsing the same document does not mean sharing the same 

interests and goals.
e.g. Two programmers are reading HOW-TO of Linux-2.6 
device driver. One is a FreeBSD kernel hacker, and another is 
an ethernet board manufacturer.



cSuite: cross-community support 
using HTTP proxy

individual's interest
community's topic

topic

glossary glossary glossary

● Each community provides 
"glossary" as community's 
knowledge.

● A user specifies a list of glossary 
servers that the user is interested in.

● cSuite provides additional 
information to HTML documents.

The development of cSuite is sponsored by IPA, Japan.



Basic ideas of cSuite

● One possible way to identify user's task
and to find supportive persons/related documents:

– Words are very important clues of user's tasks.

– Many communities provide their glossaries as
● FAQs

● Tutorials

– Natural Language Processing techniques like
● Text classification

● Word disambiguation



Architecture of cSuite

WebBrowser

cScope
HTTP proxy

Information
(URL history)

cSorter
info recommender

user model
(Naive Bayes)

bookmark
folders

cIris
message filter

localhost

glossary glossary glossary



cScope: HTTP proxy

● cScope is a private HTTP proxy 
server which works on localhost.

● cScope wiretaps all "GET" requests 
and returned HTML documents.

● cScope inserts icons to each 
occurrence of keywords.

● Each icon represents a community.



Context delivery

individual's interest
community's topic

topic
activity



cSorter: datamining user's interests

● A user provides "categories", 
which represents user's interests.

● The user also gives bookmarks 
in each category, which are 
sample documents of each 
interest.

● cSorter recommends documents 
for each category using Naive 
Bayes (from URL history).



Interests are dynamic

● The system should catch up updates of user's 
interests.

– A user may get interested in a new topic.

– A user may expand the range of a topic.

– A user may retract a topic of interest.

– A user may have different interests on a same 
document.

– and so on...



cIris: Information filter at end points

● Many communities provide tons of 
information via mailing lists.

● Many participates have only partial 
intests in the community's topics.

● cIris filters documents using the 
stochastic model developed by cSorter.

● cIris uses distribution of keywords as a 
user model.
(similar to distribution of functionality)

mailing list

cIris



Sender's benefit on receiver's filter

● Suppose that you are sending a message to a 
mailing list...

– A sender don't know receivers' interests.
● You may hesitate to broadcast the message

 which many receiver can respond to.

● Or, you may bother people by broadcasting the message 
which no reciever really care.

– Using cIris, senders don't have to worry about 
receivers' interests.



Difficulties revisited

● Identifying task

– cSorter can classify recent N documents to identify 
the topic of the current task.

– cScope can help users to identify potential topic of 
the current task.

● Recommending artifacts/people

– cSorter

– cIris: see the next slide.



cSuite for DynC

● Possible ways to extend cSuite for “dynamic community"

– Use cIris to screen persons

● public cIris: Send remote query to cIris of your friends.

– privacy issue ... cIris has a lot of private information!

● P2P cIris: Flood the message into a P2P-like network and 
filter at each node using cIris.



Conclusions

● Cross-community activities need support over 
multiple communities.

● cSuite is a support tool for cross-community 
activities focused on individuals:
– Context delivery suggests potential support of / potential 

contribution to a community.

– Document categorization catches up changes of interests.

– Information filtering at receiver's end.

● Possible extention for DynC


