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Abstract -- Reuse of large-grain software components offers
the potential for significant savings in application development
cost and time. Successful reuse of components and component
substitutability depends both on qualities of the components
reused as well as the software context in which the reuse is
attempted. Disciplined approaches to the structure and design
of software applications offers the potential of providing a hos-
pitable setting for such reuse. We present the results of a series
of exercises designed to determine how well “off-the-shelf”
constraint solvers could be reused in applications designed in
accordance with the C2 software architectural style. The exer-
cises involved the reuse of SkyBlue and Amulet’s one-way for-
mula constraint solver. We constructed numerous variations of
a single application (thus an application family). The paper
summarizes the style and presents the results from the exer-
cises. The exercises were successful in a variety of dimensions;
one conclusion is that the C2 style offers significant potential
for the development of application families and that wider tri-
als are warranted.1

Index Terms-- architectural styles, message-based architec-
tures, application families, graphical user interfaces (GUIs),
constraint management, component-based development.

I. Introduction
Software architecture research is directed at reducing

costs of developing applications and increasing the potential
for commonality between different members of a closely
related product family. One aspect of this research is devel-
opment of software architectural styles, canonical ways of
organizing the components in a product family [10], [27].
Typically, styles reflect and leverage key properties of one or
more application domains and recurring patterns of applica-
tion design within those domains. As such, architectural
styles have the potential for providing structure for off-the-
shelf (OTS) component reuse.

However, all styles are not equally well equipped to sup-
port reuse. If a style is too restrictive, it will exclude the
world of legacy components. On the other hand, if the set of
style rules is too permissive, developers may be faced with
all of the well documented problems of reuse in general [3],
[9], [13], [35]. Therefore, achieving a balance, where the
rules are strong enough to make reuse tractable but broad
enough to enable integration of OTS components, is a key
issue in formulating and adopting architectural styles.

Our experience with C2, a component- and message-
based style for GUI software [38], [39] indicates that it pro-
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vides such a balance. In a series of exercises, we were able
to integrate several OTS components of various granularities
into architectures that adhere to the rules of C2. This paper
focuses on a subset of these exercises, in which we success-
fully integrated two externally developed UI constraint solv-
ers into a C2 architecture: SkyBlue [32] and Amulet’s one-
way formula solver [17]. In doing so, we were able to create
several constraint maintenance components in the C2 style,
enabling the construction of a large family of applications.
We describe the details of these exercises and the lessons we
learned in the process.

The remainder of the paper is organized as follows.
Section II describes the rules and intended goals of C2, as
well as its relationship to the research that has preceded and
influenced it. Part of the material in this section is condensed
from a more detailed exposition on the style, given in [39].
Section III discusses our approach to providing implementa-
tions for architectures built according to the rules of C2.
Section IV presents a detailed overview of the architecture
and implementation of KLAX, the application used as the
basis for our exercises. Section V motivates the need for a
constraint manager in KLAX and describes the particular
KLAX constraints we decided to maintain in an external
constraint solver. Section VI discusses the design and imple-
mentation issues encountered in integrating SkyBlue and
Amulet’s constraint manager with the architecture. The
library of KLAX components created in the process of
including SkyBlue and Amulet is described in Section VII.
A discussion of several instances of the KLAX application
family built with the components from the library is given in
Section VIII. A discussion of related work and conclusions
round out the paper.

II. Overview of the C2 Architectural Style
C2 is an architectural style designed to support the partic-

ular needs of applications that have a graphical user inter-
face aspect. The style supports a paradigm in which UI
components, such as dialogs, structured graphics models (of
various levels of abstraction), and, as this paper will show,
constraint managers, can more readily be reused. A variety
of other goals are potentially supported as well. These goals
include the ability to compose systems in which: compo-
nents may be written in different programming languages,
components may be running in a distributed, heterogeneous
environment without shared address spaces, architectures
may be changed dynamically, multiple users may be inter-
acting with the system, multiple toolkits may be employed,
multiple dialogs may be active, and multiple media types
may be involved.



II.A. Style Rules
The C2 style can be informally summarized as a network

of concurrent components hooked together by connectors,
i.e., message routing devices. Components and connectors
both have a defined top and bottom. The top of a component
may be connected to the bottom of a single connector and
the bottom of a component may be connected to the top of a
single connector. No direct component-to-component links
are allowed. There is no bound on the number of compo-
nents or connectors that may be attached to a single connec-
tor. When two connectors are attached to each other, it must
be from the bottom of one to the top of the other (see Fig. 1).

Fig. 1. A sample C2 architecture. Jagged lines represent the parts of the ar-
chitecture not shown.

Each component has a top and bottom domain. The top
domain specifies the set of notifications to which a compo-
nent responds, and the set of requests that the component
emits up an architecture. The bottom domain specifies the
set of notifications that this component emits down an archi-
tecture and the set of requests to which it responds. All com-
munication between components is achieved by exchanging
messages. This requirement is suggested by the asynchro-
nous nature of component-based architectures, and, in par-
ticular, of applications that have a GUI aspect, where both
users and the application perform actions concurrently and
at arbitrary times and where various components in the
architecture must be notified of those actions. Message-
based communication is extensively used in distributed
environments for which this architectural style is suited.

Central to the architectural style is a principle of limited
visibility or substrate independence: a component within the
hierarchy can only be aware of components “above” it and is
completely unaware of components which reside “beneath”
it. Notions of above and below are used in this paper to sup-
port an intuitive understanding of the architectural style. As
is typical with virtual machine diagrams found in operating
systems textbooks, in this discussion the application code is
(arbitrarily) regarded as being at the top while user interface
toolkits, windowing systems, and physical devices are at the
bottom. The human user is thus at the very bottom, interact-
ing with the physical devices of keyboard, mouse, micro-
phone, and so forth.

Substrate independence has a clear potential for fostering
substitutability and reusability of components across archi-
tectures. One issue that must be addressed, however, is the
apparent dependence of a given component on its “super-

strate,” i.e., the components above it. If each component is
built so that its top domain closely corresponds to the bot-
tom domains of those components with which it is specifi-
cally intended to interact in the given architecture, its
reusability value is greatly diminished and it can only be
substituted by components with similarly constrained top
domains. For that reason, the C2 style introduces the notion
of event translation. Domain translation is a transformation
of the requests issued by a component into the specific form
understood by the recipient of the request, as well as the
transformation of notifications received by a component into
a form it understands [39], [43]. The C2 design and develop-
ment tools [20], [30] are intended to provide support for
accomplishing this task.

Fig. 2. The Internal Architecture of a C2 Component.

The internal architecture of a component shown in Fig. 2
is targeted to the user interface domain. While issues con-
cerning composition of an architecture are independent of a
component’s internal structure, for purposes of exposition
below, this internal architecture is assumed. C2 also sup-
ports compositionality, or hierarchical composition, where
an entire architecture becomes a single component in
another, larger architecture.

Each component may have its own thread(s) of control, a
property also suggested by the asynchronous nature of tasks
in the GUI domain. It simplifies modeling and programming
of multi-component, multi-user, and concurrent applications
and enables exploitation of distributed platforms. A pro-
posed conceptual architecture is distinct from an implemen-
tation architecture, so that it is indeed possible for
components to share threads of control.

Finally, there is no assumption of a shared address space
among components. Any premise of a shared address space
would be unreasonable in an architectural style that allows
composition of heterogeneous, highly distributed compo-
nents, developed in different languages, with their own
threads of control, internal structures, and domains of dis-
course.

II.B. Influences
The C2 work has drawn inspiration from many sources:

• layered systems,
• implicit invocation,
• operating system (OS) process support,
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• component interoperability models, and
• software architectures.
While C2 has many similarities to existing work in these
areas, there are also important differences that distinguish it
from them.

In contrast to existing systems, such as Field [29] and
SoftBench [6], X Windows [33], Chiron-1 [40], Arch [28],
and Slinky [44], which support only a fixed number oflay-
ers in an architecture, the C2 architectural style allows lay-
ering to vary naturally with the application domain. In this,
the C2 style is similar to GenVoca [2], whose components
may be composed in a number of layers that naturally
reflects the characteristics of a particular domain. Unlike
GenVoca, which uses explicit invocation, C2 provides a lay-
ering mechanism based on implicit invocation. This allows
the C2 style to provide greater flexibility in achieving sub-
strate independence in an environment of dynamic, multi-
lingual components: component recompilation and relinking
can be avoided and on-the-fly component replacement
enabled [24].

In C2, implicit invocation occurs when a component
invokes its internal object in reaction to a notification. The
invocation is implicit because a component issuing notifica-
tions does not know if those notifications will cause any
reaction, nor does it explicitly name an entry point into a
component below it. The benefits of implicit invocation are
described in the context of mediators by Sullivan and Notkin
[36], [37]. While many systems, such as Chiron-1 and Visu-
alWorks [26]2, employ implicit invocation for its benefits in
minimizing module interdependencies, the C2 style also
provides a discipline for ordering components which use
implicit invocation, yielding substrate independence.

Another example of implicit invocation is the Weaves
system [11], in which concurrently executing tool fragments
communicate by passing (pointers to) objects. This passing
of objects causes Weaves to be used in a data flow manner.
Weaves allows data moving between output and input por-
tals of connected tool fragments. Unlike C2, which allows
messages to flow in both directions along a communication
link, data flow in weaves is unidirectional (“left to right”);
flow in the other direction is achieved by explicitly creating
communication cycles. Similarly to C2, communication in
Weaves occurs via connectors (transport services). Further-
more, the granularity of tool fragments is on the order of a
single procedure. This, coupled with unidirectional data
flow and communication cycles, can result in Weave archi-
tectures consisting of large numbers of tool fragments and
transport services with a complicated interconnection struc-
ture.

Existing systems tend to be rigid in terms of mapping
their components toOS processes. At one extreme, X appli-
cations contain exactly two processes, a client and a server.
While there is greater process flexibility in VisualWorks and
Weaves, both of these systems assume a shared address
space. It is only with systems such as GenVoca, Field or
SoftBench, and C2 that simultaneous satisfaction of arbi-
trary numbers of processes in a non-shared address space is

2. VisualWorks is a Smalltalk GUI library based on the Model-View-Con-
troller paradigm [12], where the model broadcasts change of state notifica-
tions to views and controllers.

achieved.
Existingcomponent interoperability models, such as OLE

[5] and OpenDoc [25], provide standard formats for describ-
ing services offered by a component and runtime facilities to
locate, load, and execute services of other components.
Since these models are concerned with low-level implemen-
tation issues and provide little or no guidance in building a
system out of components, their use is neither subsumed by
or restricted by C2. In fact, these models may be used to
realize an architecture in the C2 style.

Perhaps the greatest influence on C2 has been the grow-
ing body of research onsoftware architectures: abstractions
for representing high-level structure of (potentially large)
systems, languages for modeling those abstractions, and
tools to support specification, analysis, and implementation
of architectures. Examples of relevant approaches are
Rapide [14], Wright [1], UniCon [34], MetaH [42], and Dar-
win [15]. C2 in particular shares the basic vocabulary with
architecture description languages (ADLs) like Wright and
UniCon, which explicitly focus on software connectors as
first-class entities in describing architectures. Recognizing
that connectors play a primary role in software architectures
enables the separation of computation form communication
and thus fosters system reconfigurability.

It is this explicit treatment of connectors that, for exam-
ple, directly distinguishes C2 from more traditional layered
systems, such as network systems (e.g., Avoca [2]) and
operating systems. Connectors provide a level of indirection
that reduces dependencies among computational elements
(components). Coupled with implicit invocation and domain
translation, this indirection gives developers more flexibility
in building systems out of (existing) components whose
interfaces do not match perfectly, and enhancing such sys-
tems incrementally as additional (needed) functionality
becomes available. For example, a C2 connector can decide
to route some of the requests that were initially handled (and
possibly ignored) by component X to the new component Y,
which can process them faster and/or provide higher-preci-
sion results. From the stand point of components which are
below them in a C2 architecture, X and Y comprise a single
component, as illustrated in Fig. 3.

Fig. 3. An example (partial) architecture built according to C2 style rules.
The architecture demonstrates C2’s support for reconfigurability: compo-
nent Y has been added to an existing architecture and connector B1 routs to
it some of the requests that used to be delivered to component X. None of
the components below B1 (e.g., Comp2 and Comp3) need to be updated in
any manner, as they are effectively still communicating with a single com-
ponent.
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III. Implementing C2-Style Architectures
The ultimate goal of any software design and modeling

endeavor is to produce the executable system. An elegant
and effective architectural model is of limited value unless it
can be converted into a running application. Doing so manu-
ally may result in many problems of consistency and trace-
ability between an architecture and its implementation. For
example, it may be difficult to guarantee or demonstrate that
a given system correctly implements an architecture. Fur-
thermore, even if this is currently the case, one has no means
of ensuring that future changes to the system are appropri-
ately traced back to the architecture and vice versa. It is,
therefore, desirable, if not imperative, for architecture-based
software development approaches to provide source code
generation tools.

Fig. 4. C2 object-oriented class framework.

To support implementation of C2 architectures, we devel-
oped an extensible framework of abstract classes for C2
concepts such as components, connectors, and messages,
shown in Fig. 4. This framework is the basis of development
and OTS component reuse in C2. It implements component
interconnection and message passing protocols. Compo-
nents and connectors used in C2 applications are subclassed
from the appropriate abstract classes in the framework. This
guarantees their interoperability, eliminates many repetitive
programming tasks, and allows developers of C2 applica-
tions to focus on application-level issues. In order to incor-
porate OTS components into a C2 architecture, they are
wrapped inside framework components, as shown in Fig. 5.
The framework supports a variety of implementation config-
urations for a given architecture: the entire resulting system
may execute in a single thread of control, or each compo-
nent may run in its own thread of control or operating sys-
tem (OS) process.

The framework has been implemented in C++ and Java;3

a subset is also available in Ada. The size of the framework
in both C++ and Java is approximately 3000 commented
source lines of code. We have been able to successfully
reuse the Q interprocess communication (IPC) library [16]
to enable message exchange between C2 components imple-
mented in C++ and Ada. Similar functionality for Java C2
components is under development.

3. The C++ and Java frameworks and several simple applications developed
with them are available at http://www.ics.uci.edu/pub/arch/.

Fig. 5. An OTS component is wrapped inside a C2 component.

We have also used the C++ and Java frameworks to inte-
grate the Xlib [33] and Java AWT [7] user interface toolkits,
respectively. By essentially wrapping them in the manner
depicted in Fig. 5, they become C2 “graphics binding” com-
ponents. Such graphics bindings are needed since many
potential C2 components, such as these commercial toolkits,
have interface conventions that do not match up with C2’s
notifications and requests. Typically these systems will gen-
erate events of the form “this window has been selected” or
“the user has typed the ‘x’ key” and send themup an archi-
tecture. These toolkit events will need to be converted into
C2 requests. Conversely, notifications from a C2 architec-
ture will have to be converted to the type of invocations that
a toolkit expects. In order for these translations to occur and
be meaningful, careful thought has to go into the design of
the graphics bindings such that they contain the required
functionality and are reusable across architectures and appli-
cations. In integrating Xlib and AWT, we drew from our
experience in adapting Motif and OpenLook for use in Chi-
ron-1 [40].

Our current approach to implementing C2 architectures is
implementation constraining [21]: there is a 1-to-1 relation-
ship between the components in the architectural model and
those in its corresponding implementation. It is important to
note that this is a property of our current toolset, andnot of
C2. C2 allows arbitrary mappings of conceptual to concrete
components [19]. At the same time, while limiting in certain
regards (e.g., the performance of systems implemented in
this manner will not always be adequate), this approach has
enabled us to produce implementation prototypes of C2
architectures quickly and reliably. This has, in turn, allowed
us to focus our attention on other facets of C2, such as
dynamic change of C2 architectures [24], expansion to
domains other than GUI software [20], and C2’s suitability
and support for OTS component integration and develop-
ment of application families, discussed below.

IV. Overview of KLAX
The architecture that was used as the basis for our investi-

gation of OTS component integration in C2 is a version of
the video game KLAX. A description of the game is given
in Fig. 6. This particular application was chosen as a useful
test of the C2 style concepts in that the game is based on
common computer science data structures and game play
imposes some real-time constraints on the application,
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bringing performance issues to the forefront.

Fig. 6. A screenshot and description of our implementation of the KLAX
video game.

The architecture of the system is depicted in Fig. 7. The
components that make up the KLAX game can be divided
into three logical groups. At the top of the architecture are
the components which encapsulate the game’s state. These
components are placed at the top since game state is vital for
the functioning of the other two groups of components. The
game state components receive no notifications, but respond
to requests and emit notifications of internal state changes.
Notifications are directed to the next level, where they are
received by both the game logic components and the artist
components.4

The game logic components request changes of game
state in accordance with game rules and interpret game state
change notifications to determine the state of the game in
progress. For example, if a tile is dropped from the well,
RelativePositioningLogicdetermines if the palette is in a
position to catch the tile. If so, a request is sent toPal-
etteADT to catch the tile. Otherwise, a notification is sent
that a tile has been dropped. This notification is detected by
StatusLogic, causing the number of lives to be decremented.

The artist components also receive notifications of game
state changes, causing them to update their depictions. Each
artist maintains the state of a set of abstract graphical objects
which, when modified, send state change notifications in the
hope that a lower-level graphics component will render
them on the screen.TileArtist provides a flexible presenta-
tion for tiles. Artists maintain information about the place-
ment of abstract tile objects.TileArtist intercepts any
notifications about tile objects and recasts them to notifica-
tions about more concrete drawable objects. For example, a
“Tile-Created” notification might be translated into a “Rect-
angle-Created” notification. TheLayoutManager compo-
nent receives all notifications from the artists and offsets any
coordinates to ensure that the game elements are drawn in

4. An artist is a component that creates an abstract depiction of the data it
receives. That abstract depiction can then be transformed into a screen
image by a rendering agent (in our case, C2’s graphics binding component).

the correct two-dimensional juxtaposition.
The GraphicsBindingcomponent receives all notifica-

tions about the state of the artists’ graphical objects and
translates them into calls to a window system. User events,
such as a key press, are translated into requests to the artist
components.

Fig. 7. Conceptual C2 architecture for KLAX.

The KLAX architecture is intended to support a family of
“falling-object” games. The components were designed as
reusable building blocks to support different game varia-
tions. One such variation is described in [39].

The KLAX implementation is built using the C++ frame-
work. The implementation consists of approximately 8100
lines of commented C++ code, in addition to the base frame-
work’s 3000 lines of code. Performance of the implementa-
tions is good on a Sun Sparc2 workstation, easily exceeding
human reaction time if theClockLogic component is set to
use short time intervals. Although we have not yet tried to
optimize performance, benchmarks indicate that our current
framework can send 1200 simple messages per second when
sending and receiving components are in the same process.
In the KLAX system, a keystroke typically causes 10 to 30
message sends, and a tick of the clock typically causes 3 to
20.

V. KLAX Constraints
In its form as described above, KLAX does not necessar-

ily need a constraint solver. Its constraint management needs
would certainly not exploit the full power of a solver such as
SkyBlue, e.g., handling constraint hierarchies [32]. On the
other hand, we think it should be possible to use a powerful
constraint manager for maintaining a small number of sim-
ple constraints. Additionally, the main purpose of this effort
was to explore the architectural issues in integrating OTS
components into a C2 architecture. We therefore opted not
to unnecessarily expend resources to artificially create a sit-
uation where a number of complex constraints needed to be
managed. Instead, we decided to integrate SkyBlue with
KLAX to support its extant constraint management needs. If
we were unable to do so, there would be at least three possi-
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ble sources of problems: (1) the C2 style, (2) the KLAX
architecture, and (3) SkyBlue. In any case, we would learn a
useful lesson.

We defined the following 4 constraints for management
by SkyBlue:
• Palette Boundary: The palette cannot move beyond the

chute and well’s left and right boundaries.
• Palette Location: Palette’s coordinates are a function of

its location and are updated every time the location
changes.5

• Tile Location: The tiles which are on the palette move
with the palette. In other words, the x coordinate of the
center of the tile always equals the x coordinate of the
center of the palette.

• Resizing: Each game element (chute, well, palette, and
tiles), is maintained in an abstract coordinate system by its
artist. This constraint transforms those abstract coordinate
systems, resizing the game elements to have the relative
dimensions depicted in Fig. 6 before they are rendered on
the screen. This constraint would be essential in a case
where the application is composed from preexisting com-
ponents supplied by different vendors. A similar con-
straint could also be used to accommodate resizing of the
game window, and hence of the game elements within it.

VI. Integrating External Constraint Managers with
KLAX

VI.A. Integrating SkyBlue
The four constraints were defined based on the needs of

the overall application. Further thought was still needed to
decide the location of the constraint manager in the KLAX
architecture. There clearly were several possibilities. One
solution would have been to include SkyBlue within the
appropriate components for thePalette Boundary, Palette
Location, and Tile Location constraints, since they affect
individual game elements (i.e., they are “local”). TheResiz-
ing constraint pertains to several game elements, and would
thus belong in a separate component.

Fig. 8. The SkyBlue constraint management system is incorporated into
KLAX by placing it inside theLayoutManager component.LayoutMan-
ager’s dialog handles all the C2 message traffic.

We initially opted for another solution: define all four
constraints in a centralized constraint manager component.
The LayoutManager component was intended to serve as a

5. Location is an integer between 1 and 5.

constraint manager in the original design of KLAX shown
in Fig. 7. However, in the initial implementation, the con-
straints were solved with in-line code locally inPaletteADT
and PaletteArtist and the sole purpose ofLayoutManager
was to properly line up game elements on the screen. The
implemented version ofLayoutManager also placed the bur-
den of ensuring that the game elements have the same rela-
tive dimensions on the developers of thePaletteArtist,
ChuteArtist, andWellArtist components. Incorporating con-
straint management functionality intoLayoutManager
therefore rendered an implementation more faithful to its
original design.

The constraints were defined in the “dialog and con-
straints” part of theLayoutManager component (see Fig. 2),
while SkyBlue became the component’s internal object. As
such, SkyBlue has no knowledge of the architecture of
which it is now a part. It maintains the constraints, while all
the request and notification traffic is handled byLayoutMan-
ager’s dialog, as shown in Fig. 8.LayoutManager thus
became a constraint management component in the C2 style
that can be reused in other applications by only modifying
its dialog to include new constraints.6

PaletteADT, PaletteArtist, ChuteArtist, andWellArtist also
needed to be modified. Their local constraint management
code was removed. Furthermore, their dialogs and message
interfaces were expanded to notifyLayoutManager of
changes in constraint variables and to handle requests from
LayoutManager to update them.

It is important to note that it was not necessary to modify
these four components in order for the architecture contain-
ing the newLayoutManager to behave correctly. However,
just like the originalLayoutManager was modified to reflect
its intent, these components’ implementations were modi-
fied to mirror their intended behavior as well. As already
discussed in the preceding section, building this new version
of LayoutManager and inserting it into the architecture was
not motivated by the need for functionality that did not
already exist in the architecture (the application had already
behaved as desired). Rather, the drivers were improved
traceability of architectural decisions to the implementation
and vice versa, construction of a powerful constraint man-
agement component in the C2 style, and investigation of
issues in integrating OTS components into C2-style archi-
tectures. This matter is further discussed below in
Section VIII.B.

11 new messages were added to handle this modification
of the original application and there was no perceptible per-
formance degradation. The entire exercise was completed
by one developer in approximately 45 hours.

VI.B. Integrating Amulet
C2 supports reuse through component-based develop-

ment, substrate independence, and domain translation.
These features also support component substitutability and
localization of change. We claim that, in general, two behav-
iorally equivalent components can always be substituted for
one another and that behavior preserving modifications to a
component’s implementation have no architecture-wide

6. In the remainder of the paper, when we state that a constraint solver is
“inside” or “internal to” a component, the internal architecture of the com-
ponent will resemble that ofLayoutManager from Fig. 8.
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effects [19].
In the example discussed in the previous section, this

would mean that SkyBlue may be replaced with another
constraint manager by only having to modify the “dialog
and constraints” portion ofLayoutManager to define con-
straints as required by the new solver. The set of messages in
LayoutManager’s interface and the rest of the KLAX archi-
tecture would remain unchanged.

To demonstrate this claim, we substituted SkyBlue with
Amulet’s one-way formula constraint solver [17]. This exer-
cise required identifying, extracting, and recompiling the
needed portion of Amulet, a task that was accomplished by
a single developer in approximately 25 hours.7 This added
effort was necessitated by our inability to locate implemen-
tations of any other constraint solvers. It resulted in a situa-
tion that is common when attempting software reuse: OTS
systems may not contain components that can be clearly
identified or easily isolated and extracted [4], [9], [13].

Once the solver was extracted from the rest of Amulet, it
was successfully substituted for SkyBlue in the KLAX
architecture and tested by one developer in 75 minutes. As
anticipated, no architecture-wide changes were needed.
Only the interior of theLayoutManager component needed
to be modified: its internal object was now Amulet instead
of SkyBlue; the constraint variables updated by the compo-
nent’s dialog in response to incoming C2 messages were
now defined in Amulet. The look-and-feel of the application
remained unchanged. There was again no performance deg-
radation.

VII. KLAX Component Library
Integrating SkyBlue and Amulet with KLAX provided an

opportunity for building multiple versions ofPaletteADT,
PaletteArtist, ChuteArtist, WellArtist, and LayoutManager
components. Individual versions of each component would
differ based on two criteria:
• constraints maintained — if two versions of a component

maintain different constraints internally, their message
interfaces will also differ to account for that. Extreme
cases are (1) components that enforce all of their local
constraints and (2) those that enforce no constraints.

• mechanism used for constraint maintenance — a compo-
nent can maintain a constraint (1) with in-line code, as in
the original implementation, (2) in SkyBlue, (3) in Amu-
let, or (4) using a combination of the three.
The two integrations described in the previous section

resulted in three versions ofLayoutManager: the original,
SkyBlue, and Amulet versions. These are listed asLayout-
Manager versions 1, 2, and 3 in Table 1. Two versions each
of PaletteADT, PaletteArtist, ChuteArtist, and WellArtist
were created as well: original components maintaining local
constraints with in-line code (versions 1 of the four compo-
nents in Table 1) and components whose constraints were
managed elsewhere in the architecture (versions 2 of the
four components in Table 1).8

7.  For the purpose of brevity, in the remainder of the paper Amulet’s one-
way formula constraint manager will be referred to simply as “Amulet.”

The two initial integrations also suggested other varia-
tions of these components, such as replacing in-line con-
straint management code with SkyBlue and Amulet
constraints inPaletteADT andPaletteArtist (see Footnote 6).
Also, a version ofLayoutManager was implemented that
maintained only theResizing constraint, in anticipation that
other components will internally manage their local con-
straints (this scenario was briefly described at the beginning
of Section VI). This resulted in a total of 18 implemented
versions of the five components, as depicted in Table 1.

VIII. Building a Program Family
The four versions ofPaletteADT and PaletteArtist, two

versions ofChuteArtist andWellArtist, and six versions of
LayoutManager, described in Table 1, could potentially be
used to build 384 different variations of the KLAX architec-
ture, i.e., members of the KLAX application family. Three
such variations were described in Section IV (using versions
1 of all five components), Section VI.A (using versions 2 of
the five components), and Section VI.B (replacingLayout-
Manager-2 with LayoutManager-3 in the architecture from
Section VI). In this section, we discuss several additional
implemented variations of the architecture that exhibit inter-
esting properties.

VIII.A. Multiple Instances of a Constraint Manager
In the architecture depicted in Table 2, thePalette Bound-

ary, Palette Location, and Tile Location constraints are
defined and maintained in SkyBlue insidePaletteADT and

8. In the rest of the paper, a particular component version will be depicted
by the component name followed by version number (e.g., PaletteADT-2).

Table 1: Implemented Versions ofPaletteADT, PaletteArtist,
ChuteArtist, WellArtist, andLayoutManager KLAX Components

Version
Number

Constraints
Maintained

Constraint
Managers

P
al

et
te

A
D

T

1 Palette Boundary In-Line Code

2 None None

3 Palette Boundary SkyBlue

4 Palette Boundary Amulet

P
al

et
te

A
rt

is
t

1 Palette Location
Tile Location

Tile Size

In-Line Code

2 None None

3 Palette Location
Tile Location

SkyBlue

4 Palette Location
Tile Location

Amulet

C
hu

te
A

rt
is

t 1 Chute Size In-Line Code

2 None None

W
el

l
A

rt
is

t 1 Well Size In-Line Code

2 None None

La
yo

ut
M

an
ag

er

1 None None

2 All SkyBlue

3 All Amulet

4 Resizing SkyBlue

5 Resizing Amulet

6 All SkyBlue & Amulet



PaletteArtist, while theResizing constraints are maintained
globally by LayoutManager. Therefore, multiple instances
of SkyBlue maintain the constraints in different KLAX
components. Since C2 separates architecture from imple-
mentation, we were able to implement the three components
that contain their own logical copies of SkyBlue using a sin-
gle physical instance of the constraint manager.

VIII.B. Partial Communication and Service Utilization
Particularly interesting are components that are used in an

architecture for which they have not been specifically
designed, i.e., they can do more or less than they are asked
to do. This is an issue of reuse: if we build components a
certain way, are their users (designers) always obliged to use
them “fully”; furthermore, can meaningful work be done in
an architecture if two components communicate only par-
tially, i.e., certain messages are lost? The architectures
described below represent a crossection of exercises con-
ducted to better our understanding of partial communication
and partial component service utilization.
• A variation of the original architecture was implemented

by substitutingLayoutManager-2 into the original archi-
tecture, as shown in Table 3.LayoutManager-2’s func-
tionality remains largely unused as no notifications are
sent to it to maintain the constraints (see Section VI.A).
The application still behaves as expected and there is no
performance penalty. Note that this will not always be the
case: if LayoutManager-2 was substantially larger than
LayoutManager-1 or had much greater system resource
needs (e.g., its own operating system process), the perfor-
mance would be affected.

• Another architecture that was built is shown in Table 4.
This exercise was intended to explore heterogeneous
approaches to constraint maintenance in a single architec-
ture: some components in the architecture maintain their
constraints with in-line code (WellArtist andChuteArtist),
others maintain them internally using SkyBlue (Pal-
etteADT), while PaletteArtist’s constraints are maintained
by an external constraint manager.LayoutManager-2 is

still partially utilized, but a larger subset of its services is
used than in the preceding architecture.

• In the architecture shown in Table 5,PaletteADT expects
that thePalette Boundaryconstraint will be maintained
externally by some other component. However, in this
case,LayoutManager-1 does not understand and therefore
ignores the notifications sent byPaletteADT (partial com-
munication). Movement of the palette is thereby not con-
strained and the application behaves erroneously: the
palette disappears when moved beyond its right boundary;
the execution aborts when the palette moves beyond the
left boundary and theGraphicsBinding component (see
Section IV) attempts to render it at negative screen coor-
dinates.

The above examples seem to imply that partial service
utilization generally has no ill effects on a system, while
partial communication does. This is not always the case. For
example, an additional version of each component from the
original architecture was built to enable testing of the appli-
cation. These components would generate notifications that
were needed by both components below them in the archi-
tecture and the testing harness. If a “testing” component was
inserted into the original architecture, all of its testing-
related messages would be ignored by components below it,
resulting in partial communication, yet the application
would still behave as expected. Clearly, the overhead of dis-
patching messages that ultimately get ignored may be pro-
hibitively expensive in certain situations. In general, a useful
metric for determining the potentially negative effects of
partial communication would be the ratio of the number of
lost messages to the total number of messages in an archi-
tecture.

VIII.C. Multiple Constraint Managers in a Single
Component

LayoutManager-6 had some of its constraints defined in
SkyBlue and others in Amulet. Combining multiple con-
straint solvers in a singlesystem has only recently been
identified as a potentially useful approach to constraint man-

Table 2: Multiple Instances of SkyBlue

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 3 Palette Location
Tile Location

SkyBlue

ChuteArtist 2 None None

WellArtist 2 None None

LayoutManager 4 Resizing SkyBlue

Table 3: None ofLayoutManager’s Constraint Management
Functionality is Utilized

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 1 Palette Boundary In-Line Code

PaletteArtist 1 Palette Location
Tile Location
Palette Size

In-Line Code

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 2 All SkyBlue

Table 4: LayoutManager’s Constraint Management Functionality is
Only Partially Utilized

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 2 None None

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 2 All SkyBlue

Table 5: Palette Boundary Constraint is not Maintained

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 2 None None

PaletteArtist 1 Palette Location
Tile Location
Palette Size

In-Line Code

ChuteArtist 1 Chute Size In-Line Code

WellArtist 1 Well Size In-Line Code

LayoutManager 1 None None



agement [17], [32]. Integrating multiple constraint solvers in
a single C2component is certainly at a different level of
granularity. However, this exercise sensitized us to several
issues intrinsic to the interaction of heterogeneous constraint
managers.

Specifying constraints in different solvers over disjoint
sets of variables is a trivial task, since there are no depen-
dencies between the solvers. On the other hand, if the two
sets of constraint variables intersect, the problem is more
complex. In our case, constraint variables in SkyBlue and
Amulet are of different types, so that the same variable can-
not be used in constraints specified in both solvers. There-
fore, each conceptually common variable is implemented by
two actual variables (var_SkyBlue and var_Amulet). Fur-
thermore, additional functionality is needed to monitor the
changes in the variables and programmatically update one
when the other is changed due to constraint enforcement
(see Fig. 9).

Fig. 9. To provide consistent constraint maintenance across constraint solv-
ers, each conceptually common constraint variable (CV) is implemented
with two actual variables. Changes in one are automatically reflected in the
other.

For example, inLayoutManager-6, Palette Boundary, Tile
Location, andResizing constraints are defined in SkyBlue,
while Palette Locationis specified in Amulet. Every time
location_SkyBlue changes, its new value is assigned to
location_Amulet so that Amulet can properly update the
paletteX_Amulet variable. To propagate its change through
the rest of SkyBlue variables,paletteX_Amulet’s new value
is copied intopaletteX_SkyBlue.

Our solution to defining SkyBlue and Amulet constraints
over overlapping sets of variables, although effective, was
not particularly elegant. It had the feel of programming
one’s own application-specific constraint management func-
tionality. While the purpose of the exercise was to investi-
gate issues pertinent to software architectures and
application families, this problem has broader ramifications.
A scenario where both a powerful but complex solver and a
simple one are needed in an application is likely. Therefore,
we consider the problem of multiple interacting constraint
managers an open research issue that requires careful exam-
ination. We are currently exploring what role an architec-
tural style such as C2, and particularly its support for
compositionality, may play in the resolution of this problem.

VIII.D. Multiple Constraint Managers in an
Architecture

An issue related to using multiple constraint managers
inside a single component is using multiple constraint man-
agers in different components, but in a single architecture.
Such an architecture was built using components shown in
Table 6. In this architecture,Palette Boundary andResizing
constraints are maintained by SkyBlue, andPalette Location

and Tile Location by Amulet. Since the sets of constraint
variables managed by the two solvers are disjoint, there are
no interdependencies of the kind discussed in the previous
example between SkyBlue and Amulet.9 Hence, this modifi-
cation to the architecture was a simple one.

IX. Related Approaches
Explicit focus on software architectures, and architectural

styles in particular have a great potential to facilitate both
OTS component reuse and development of families of appli-
cations. Krueger points out some common problems in bas-
ing reuse on software architectures [13]. His criticism
mainly applies to those approaches that do not identify
higher-level abstractions applicable across applications. C2,
on the other hand, is a style that attempts to exploit com-
monalities across systems, and reuse individual components
as well as successful structural and communication patterns.

The two goals of maximizing reuse and building system
families do not always go hand in hand. For example, one
focus of domain-specific software architectures (DSSAs) is
on developing a genericreference architecture for all sys-
tems in a particular domain of applicability [41]. The refer-
ence architecture is then instantiated for every individual
system within the domain, as shown in Fig. 10. By making
reference architectures explicit, DSSAs employ a systematic
approach to developing application families.

In the work we discussed in this paper we do not develop
a reference architecture as a basis for building the KLAX
application family. However, there is also nothing inherent
in the C2 style that prohibits one from doing so. Quite the
contrary, as an architectural style, C2 can be applied to mul-
tiple domains, each of which would require its own refer-
ence architecture. C2’s ADL and underlying formalism [18],
[19], [22] are well suited for this: each component in a C2
architecture is a conceptual placeholder which can be
instantiated by different implemented modules. The ease
with which we were able to build the application family
described in this paper without the aid of a reference archi-
tecture is indicative of C2’s potential in this regard.

Unlike their inherent support for application families,
DSSAs have tended to support reuse only to a limited
degree. GenVoca [2] is an illustrative example. It has been
particularly successful in producing a large library of reus-
able components. However, those components have been
custom built for the GenVoca style. In order to reuse them,
one must adhere to GenVoca’s formalism and its hierarchi-
cal approach to component composition, which may result

9.  Architectures built according to the C2 style will always have this prop-
erty: since C2 does not assume a single address space for its components,
inter-component constraint variable sets will always be disjoint.

B C

X

CV1

CV2

CV2CV1

A Solver-1 Solver 2

Table 6: Multiple Constraint Solvers

Component Version
Number

Constraints
Maintained

Constraint
Managers

PaletteADT 3 Palette Boundary SkyBlue

PaletteArtist 4 Palette Location
Tile Location

Amulet

ChuteArtist 2 None None

WellArtist 2 None None

LayoutManager 4 Resizing SkyBlue



in a high degree of dependency between communicating
components. On the other hand, C2’s style rules and under-
lying formalism are more flexible; C2 eliminates assump-
tions of shared address spaces and threads of control, allows
both synchronous and asynchronous message-based com-
munication, and separates the architecture from the imple-
mentation.

Fig. 10. A simplified, high-level view of the DSSA lifecycle. A generic ref-
erence architecture is instantiated to obtain an application-specific architec-
ture, which is then used as the basis for implementation.

Several aspects of object-oriented (OO) programming
have provided us with valuable lessons. In [19] we demon-
strate how concepts from OO typing can be applied to soft-
ware architectures. The work on OO design patterns [8] has
similarities with architectural styles. However, OO design
patterns support reuse of structures at a much lower level of
abstraction than do styles.

Garlan, Allen, and Ockerbloom classify the causes of
problems developers commonly experience when attempt-
ing OTS reuse and give four guidelines for alleviating them
[9]. Our experience shows that C2 is well suited to address
these problems. The first two guidelines deal with the inter-
nal architecture of OTS components, and are thus outside
the scope of C2. The third guideline proposes techniques for
building component adaptors, which is subsumed by C2
wrappers and domain translators. Finally, the authors
emphasize the need for design guidance, which is a signifi-
cant aspect of our approach to C2 [30], [31].

Shaw discusses nine “tricks” for reconciling component
mismatch in an architecture [35]. Several of the tricks are
related to reuse techniques employed in C2. For example,
transformations, such as “Change A’s form to B’s form”,
“Provide B with import/export converters”, and “Attach an
adapter or wrapper to A,” are subsumed by C2’s wrappers
and/or domain translators. The need for other transforma-
tions is eliminated altogether by C2 style rules. For exam-
ple, “Make B multilingual” is unnecessary, as C2 assumes
that components will be heterogeneous and multilingual.

X. Conclusion
The full potential of component-based software architec-

tural styles cannot be realized unless reusing code developed
by others becomes a common practice. A new architectural
style can become a standard in its domain only if it makes
reuse easier. We believe that C2 is such a style for GUI soft-
ware, with the potential for broader applicability.

Several characteristics of the C2 style have enabled it to
better support reuse of OTS components and construction of
different members of an application family from existing
parts. Although most of these characteristics are not unique
to C2, our approach of combining them is. We believe the

style rules are restrictive enough to make reuse easier while
flexible enough to integrate components built outside the
style and connect them in an architecture in various ways
(“plug and play”):
• Component heterogeneity — No restrictions are placed on

the implementation language or granularity of the compo-
nents.

• Substrate independence — A component does not depend
on the existence of components below it.

• Internal component architecture — The internal architec-
ture of a C2 component separates communication from
processing. Thedialog isolates theinternal objectfrom
changes in the rest of the architecture. Thedomain trans-
lator reduces the dependence of a component on compo-
nents above it; a component can use different domain
translators in different architectures.

• Asynchronous message passing via connectors — Com-
ponents communicate only by exchanging asynchronous
messages through connectors. This has the potential to
greatly simplify control integration issues, such as those
encountered by Garlan and colleagues in [9].10 Coupled
with partial communication and service utilization, this
property also facilitates low-cost interchangeability of
components to construct different members of the same
family.

• No assumption of shared address space — Two compo-
nents cannot assume that they will execute in the same
address space. This eliminates complex dependencies,
such as components sharing global variables, and simpli-
fies modification of architectures.

• No assumption of single thread of control — Conceptu-
ally, components run in their own thread(s) of control.
This allows components with potentially different thread-
ing models to be integrated into a single application.

• Separation of architecture from implementation - A con-
ceptual C2 architecture can be instantiated in a number of
different ways. Many potential performance issues or
variations in functionality can be addressed by separating
the architecture from actual implementation techniques.
We have found that we can isolate some implementation
decisions in the C2 framework, discussed in Section III.
For example, a connector between two components in the
same address space can use direct procedure calls to
implement message passing.
The exercises discussed in Sections VI-VIII, as well as

recent work described in [20], have enabled us to devise an
initial set of heuristics for OTS component integration in
C2. The only assumption we make is that OTS components
provide application programmable interfaces (APIs). As our
experience with reusing OTS components grows, we expect
that this list will be expanded and refined:
• If the OTS component does not contain all of the needed

functionality, its source code must be altered or a custom-
built component must be supplied. In general, this is a dif-
ficult task, whose complexity is well recognized [9], [13],
[23].11

10.  While the style does not forbid synchronous communication, the
responsibility for implementing synchronous message passing resides with
individual components.

Reference
Architecture

Application
Architecture Implementation



• If the OTS component does not communicate via mes-
sages, a C2 wrapper must be built for it. This was the case
with both SkyBlue and Amulet.

• If the OTS component is implemented in a programming
language different from that of other components in the
architecture, an inter-process (IPC) connector must be
employed to enable their communication. A number of
existing systems provide this capability. For example, we
were able to accomplish this task for C++ and Ada com-
ponents relatively easily using the Q software bus [16].

• If the OTS component must execute in its own thread of
control, an inter-thread connector must be employed. This
was accomplished in the case of the Java AWT graphics
toolkit.

• If the OTS component executes in its own process, an IPC
connector must again be employed.

• If the OTS component communicates via messages, but
its interface does not match interfaces of components with
which it is to communicate, a domain translator must be
built for it. Although we have done some preliminary
work on domain translation in our Java class framework,
this area needs further exploration.
The information above is summarized in Table 7.

The series of exercises described in this paper demon-
strate that C2 isolates changes inside components and limits
any global effects of those changes through message-based
communication. Furthermore, C2’s principles of substrate
independence and domain translation enable component
substitutability. Finally, its component- and message-based
nature allows partial communication and service utilization
of components, which are essential to cost-effective reuse.

In a component-based style, such as C2, the number of
possible architectures grows combinatorially as the number
of behaviorally related components increases. Thus, the 18
components depicted in Table 1 can generate 384 distinct
versions of KLAX. Of course, every possible architecture is
not necessarily meaningful (e.g., the example of partial
communication in Section VIII.B) nor particularly interest-
ing. It is the responsibility of the architect to ensure that
each constraint is properly handled somewhere in the archi-
tecture. This task can be aided by a design guidance tool,
such as C2’s Argo design environment [30], [31]. What we
have shown is that C2 gives the architect added flexibility as
to exactly where and how to include the constraint handling
behavior.

11.  Note that the component can still be reused “as is” if the developers are
willing to risk degraded or incorrect performance, due to partial communi-
cation and partial component service utilization in the architecture. This
was the case with several variations of KLAX, discussed in Section VIII.

This exercise demonstrated the potential for creating a
library of components and an application family in the C2
style. In addition, we now have a constraint management
component in the C2 style that will be reused across future
applications.
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